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New Space Structure and Corntrol ‘Design Concepts

Executive Summary

The objective of this research is to develop a technique to integrate structure and con-
trol design with applications to the Phillips Lab Laser Crosslink Structure (LCS). This
structure acts as a mounting frame for a proposed laser-based communications system
attached to a DSP surveillance satellite; the laser system is part of a planned upgrade
from the radio-based system currently employed. Since the laser-based communications
system is about ten times more sensitive to transmitter /receiver line-of-sight errors than
the current communications system, an active vibration control system is necessary. The
goal of this investigation is to redesign the LCS and an appropriate controller simultane-
ously so that the vibration imparted to the structure by the satellite is compensated for
by the control system, thus facilitating communications. The results may be summarized
as follows:

1. A finite element model of the LCS was developed for the Phillips TRW design. The
freedom in this model includes mass density of the composite tubes, modulus of
elasticity, cross sectional area (representing the number of wraps of the composite
material), and the length of each finite element. A new finite element is developed
to incorporate induced strain actuation for any given beam and piezoelectric cross-
section geometries. The controller design freedom is the variance upper bounds
allowed in the pointing errors for the laser, in the presence of noisy disturbances
from the spacecraft.

2. An algorithm is developed to optimally choose the parameters in both the struc-
ture and the controller. The algorithm is guaranteed to converge to the optimal
solution. This is believed to be the first solution to a nonlinear programming prob-
lem integrating structure and control designs. Past approaches have only given
necessary conditions.

3. The results of the LCS redesign when compared to the original Phillips/TRW design
for the same variance performances:
— savings of 22% mass of composite structure
— savings of 32% control energy

— the mass is not directly penalized in the design, but it is indirectly penalized
by minimizing control energy (for a given performance constraint, it is easier

to push around small mass)




4. Software is developed to solve this generic problem which we call Optimal Mix of
Passive and Active Control (OMPAC).

5. The set of all stabilizing combinations of structural parameters, piezoelectric me-
chanical and electrical properties, and control parameters have been characterized.
For the LCS structure this allows the parametrization of stabilizing control gains
as a function of the composite tube cross-sectional areas, the location and dimen-
sions of the piezoelectric actuators, and the electrical /mechanical properties of the
actuator.

6. Covariance controllers are derived for those applications when desired covariances

are known, or when upperbounds on the output covariance matrix is specified.

7. These results were very helpful as a starting point for other DOD research to extend
the optimization beyond the covariance performance criteria of this grant (F49620-
92-0202) to include Hy/H., criteria.

In conclusion, this research has taken a giant step toward the creation of a scientific
procedure for the DESIGN process where the space structure and the controller are
optimized together as a system.
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A. Mathematical Models of Laser Crosslink Structure

Introduction:

The LCS is a support structure, connected to a spacecraft, and designed to support a
laser weapon. It is required that the structure be actively controlled so as to attenuate
the spacecraft-induced disturbances to assure the highest pointing accuracy possible for
the laser beam.

Design Requirements:

The LCS control problem is to guarantee an absolute bound on the line of sight pointing
error in the presence of a class of uncertain disturbances having a known energy bound.
The free design parameters are the material properties of the truss members and the
dynamics of the controller.

Objective

Simultaneously choose the structural the actuator, the sensor and the control design
parameters to minimize the active control energy required to accomplish the overall sys-
tem design requirements. One of the contributions of this research is to develop a theory
for design, deducing design requirements for each component of a system, given overall
system performance requirements. Finally a workstation environment for rapid design is
sought.

I. Finite Element Modeling of the Laser Crosslink Structure

We have developed a finite element model of the laser crosslink structure (LCS) to be
built by Phillips Labs, using only the six structure members which significantly influence
the motion of the laser platform. Figure 1 shows a view of the LCS and it also depicts
the crosslink structure idealization used to develop finite element models of the LCS. We
have made several assumptions in order to develop our LCS finite element model, and
these assumptions are as follows:




Figure 1




(1) The LCS can be modeled as a truss.

(2) Each structure member is uniform in composition and shape. This assumption
excluded modeling the effects of the end sleeves and fitting blades to the structure

dynamics.

(3) Mechanical damping is a function of the mass and stiffness matrices of the FEM, i.
e., we assume Rayleigh damping.

Although we have written software to assemble the mass and stiffness matrices of
an LCS finite element model, we have yet to include in our model the dynamics of
piezo-electric materials we assume will be imbedded into the structure members to act as
actuating devices. See Appendix A for more information about the LCS.

Our investigation of the LCS finite element modeling will consider three key
modeling parameters that will affect the control system design and the LCS redesign: the
number of finite elements used to model each structure member, the type of finite

element, and the length of each finite element.

II. Integrating Structure and Control Design: An Example

To illustrate our procedure, we begin with a single truss member. We shall design
the member so that the design helps to minimize the active control energy requiréd to
control the dynamics of the structure to meet required performance objectives. In this
approach we consider two broad issues which contribute to the effectiveness of a control

design to meet the specified objectives: the design and modeling of the structure.




Trusé Member Design

The choice of the material properties and the truss member geometry determine the
density, elasticity, cross-sectional area, and length of each truss member. When we
change any of these parameters to modify truss dynamics performance, the process

becomes a part of the design issue.

TRUSS MEMBER DESIGN PARAMETERS

DENSITY

ELASTICITY
CROSS-SECTION AREA
LENGTH OF THE MEMBER

| | mlo

Note that a truss member need not be uniform along its entire length, so that there may be

sub-members to consider.

Truss Modeling

If we assume that the truss dynamics are modeled via finite element methods, the
choice of the number of finite elements modeling each member, N, the type of finite
elements (denoted by the degree of the polynomial describing axial displacement), n, and
the lengths of each finite element, Lj, are considerations in the modeling process. When
we change any of these parameters to modify the fidelity of the truss model, the process

becomes part of the modeling issue.




TRUSS MEMBER MODELING PARAMETERS

NUMBER OF FINITE ELEMENTS PER MEMBER || N
TYPE OF ELEMENT
LENGTH OF EACH FINITE ELEMENT L

=

In order to determine how both the design parameters and the modeling parameters affect
the controller design issues, we considered a uniform, tubular LCS truss member
depicted by Figure 2. In this example one end of the member is inertially fixed. The
structure was controlled with minimum energy, assuming that the structure is subject to
axial control forces and the displacements and velocities at each of the modeled nodes
{uy (), uz(t), uz(t)} are the only measurements available to the control system, and it was
desired to keep these displacements within specified values. The control force, F.),
was applied to the free end of the member. In the development of the finite element
model of the member, we limited the scope of this example by using three linear ﬁriite
elements to model the member dynamics. Thus the mass and stiffness matrices for the

three finite elements are

1 -1
-1 1

_ PiAL
1= 6

21 _ EiA
12" 5T

}, i=1,2,3 .

Rayleigh damping was assumed to capture the dependence of damping on the member

mass and stiffness matrices.




Table 1 gives the values for the physical properties of each finite element of the

truss member.

Table 1

Physical properties of the member

OUTER DIAMETER (inches) 1.050
THICKNESS (inches) 0.050
CROSS-SECTIONAL AREA (in?) 0.0805
ELASTICITY (psi) 16.0 x 10°
DENSITY (slugs/in°) 1.3469 x 10~

Rayleigh damping coefficients

D=aM+ BK
o 0.001
B | 1.0e-07

One way to integrate the design and modeling problems is to define the following design

parameters for this example:

pj =pAL, j=1,2,3

=5 10
q_]- LJ 1_]_77

where the sum of the design parameters L, L,, L is fixed,
L=L;+L,+Ls5 .

The redesign algorithm begins with an FEM for the given design,




Mi(t) + (M + BAOU(t) + Ku(t) = dF,

up (1)

u() = |up(t)
us (t)
and a control law
u(t)
c= G 1
F ﬁ(t)} (1)

which meets the output variance constraints (OVC):
[ufmdr<o?, j=1,2,3 .
0

The OVC constraints used in this example are given in Table 2.

Table 2

OVC Bounds for the truss redesign member example

ot | 4.7690e-08
o5 | 2.5888¢-07
o5 | 2.7354e-07

The redesign algorithm computes optimal values for the design parameters
{P1,P2,P3,41,92,93} and simultaneously computes a control gain which minimizes a
quadratic cost function, subject to the constraint that the closed-loop system matrix is

preserved and the redesigned stiffness matrix is bounded by

K<trace[ K+ AK] < ?(

This last constraint is imposed to place a lower bound on the stiffness matrix of the

10




redesigned member. The redesigned FEM dynamics are represented by the following:

(M + AM)(Y) + (M + BK + 0AM + BAKOU() + (K + ATDu(t) = DF. (1)
AM = 1’181)1 + ?zspz + 1)38[)3
AKX = Q;06q; + Q23q; + Q338q3

u(t)
u(t)

~

F®)=G

The matrix G in (1) is determined to solve the OVC control problem. Then, the
parameters 8p;, 8p,, i=1,2,3, and G are determined to match the closed loop system
matrix (all eigenvalues, eigenvectors), by a quadratic programming algorithm, with

guaranteed stability and convergence to a global optimum. See Appendices B, C and D.

Numerical Results
The finite element model of the truss member prior to member redesign is

characterized by its mass, stiffness, and damping matrices:

1.6264e—03 5.4214e—04 0 | 1.5457e+06 —5.1522e+05 0
M = |5.4214e-04 1.8121e-03 1.1645¢-04 |, K = |-5.1522e+05 3.0737e+06 —2.5585e+06
0 1.1645¢—04 4.6581e—04 0 —2.5585e+06 2.5585e+06

1.5457¢e—01 -5.1522e-02 0
D = |-5.1522e-02 3.0738¢-01 —2.5585e—01
0 —2.5585¢-01 2.5585e—01

Our redesign algorithm resulted in the following redesign FEM which is optimal with

respect to the constraints we have imposed:

1.4728e-03 4.9094e—04 0 1.3997e+06 —4.6656e+05 0
M +AM = |4.9094e-04 1.6410e—03 1.0545¢—04 | , K+AK= |-4.6656e+05 2.7834e+06 —2.3169e+06
0 1.0545e-04 4.2182¢-04 0 -2.316%9e+06 2.3169e+06




1.3997e-01 -4.6656e—02 0
D +AD = |-4.6656e—02 2.7835¢e-01 -2.3169¢—01 |,
0 —-2.3169¢-01 2.3169¢-01

G= [34.9902, —19.4386, —13.4445, -0.0533, -0.3006, —0.1009]

where the optimal values for the design parameters are given in Table 3. For this

example we took
5.4 x 10° 1b/in < trace[ K + AK] < oo .

It is easy to see that both the mass and stiffness matrices have decreased, but what
is not obvious is that the redesign preserved the modal frequencies and modal damping

(by the Rayleigh assumption) of the open loop system, i.e., the following was preserved:
M K= (M +AMY (K +AK) .

Since the closed-loop system matrix before and after the redesign was constrained to be

the same, note that together with the above equality the redesign constraints imply that
M DG = (M + AM) " 0G

Hence we see that the redesign preserved the product of the control distribution matrix &
and the controller gain, so that a decrease in truss member mass implied a decrease in
required control gain, which is equivalent to a reduction of control effort in the redesign

method.

12




Table 3

Values for the optimal design parameters

p; =pAL,; 2.2659¢-03
p2 =pAL, 4.5318e-03
p3=pAL-L, -L,) 1.2168e-03
q; = EA/L, 1.4356e+06
q, =EA/L, 7.1779¢+05
g3 =EA/(L-L; - L,) | 2.6733e+06

We considered the case where the redesigned member was uniform over its length. This
led to necessary conditions on the design parameters to make them realizable from

physical parameters {p,E,A,L,,L,,L;} which are given by:

P1q1 =P292 =p3qs3 -

If these conditions are met, then the element lengths L;, L,, and L3 must sum to the total
length of the truss member, L, and are uniquely determined. Also, the design parameters

must satisfy:

— = _L% = EE—L% = E—(L-—Ll —L2)2 .
P P p2 p3
For the optimal values of the design parameters listed in Table 3, it may be shown that

the design freedom is to choose E and p subject to

E A2 40550411 .

P M

For the truss member redesign, once any one of {p,E,A} is chosen the remaining
quantities are determined by the design parameters {p;,ps,p3,q1.92.q3 }. Therefore we
computed p, A, and E for two cases: (1) E equal to the original design value and (2) A
equal to the original design value. Table 4 summarizes the truss member redesign. Note

that the quantity Er-1 is constant before and after the redesign, so that the ratio is
13




preserved by the design method, i.e.,

E Q q2 43
==—L}=2L}= 2 (@L-L, -1,
P P P2 P3

is an invariant in truss members using linear elements.

Table 4
Physical properties of the member redesign
Original Design E fixed A fixed
p (slugs/in”) 1.3469e-03 * 1.2197e-03
E (psi) 16.0 x 10° * 14.49 x 10°
A (in%) 0.0805 7.2900e-02 *
L; (in) 15.0 15.0 15.0
L, (in) 30.0 30.0 30.0
L; (in) 8.055 8.055 8.055

Tables 5a-5b summarize the results of the truss member and controller redesign. Note
that the redesign preserved the OVC constraints for given initial conditions

{u1(0),u2(0),u3(0),1;(0),u,(0),u3(0)} as guaranteed by our theory.

* These values were chosen to be the same as the original design.

14



Table 5a

Output variances due to initial conditions

OVC Bound | Initial FEM | FEM Redesign
7.6304e-07 | 7.6304e-07 7.6304¢-07
4.1421e-06 | 2.9139¢-06 2.9139%9¢-06
4.3767e-06 | 3.2784e-06 3.2784e-06

Table 5b

Active control effort for the FEM

Initial FEM | FEM Redesign | Change (%)
7.4913e+01 6.1431e+01 -18.0

It is important to realize that in the most general design problem for this example we
have at our disposal eleven design and model parameters, these being
{p1,p2,P3,E1,Ez,E5,A1,Ay,A3,L;,Ly )}, while this example used only five of the
modeling and the control design parameters. The choice of different material properties
pi» E; will be utilized in the modeling of the piezoelectric material forming the composite
structure for the next stage of development to integrate structure, actuator, sensor, and

control design. This will allow the structures to truly be "smart".

III. Conclusions to date

e A convergent algorithm has been developed which generates optimal choices for
material selection and control design for the Laser Crosslink Structure (LCS), or

any other similar truss structure.

e Software is now available for this algorithm.

15



e Preliminary results have produced an invariant combination of the material
properties for truss elements. We hope to show that such invariant properties will

apply to designs of other classes of systems.

Apart from the theoretical issues explored in the example of section II, other theoretical

issues which remain open are

How to optimally redesign a vector second order system with white noise

disturbances

How to redesign a vector second order system or linear system with parameter

dependent control and output matrices.

How to formulate mathematically tractable constraints on the design
parameters {p;,q;}, which are directly related to dynamic and static loads on a

Structure.

The development of a covariance control theory for vector second order

systems.
Acknowledgement:
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PHILLIPS LAB LASER CROSSLINK STRUCTURE

Laser Mount
(Pointing Error y)

’ P Y
Optimum Design

CONCLUSIONS: 18
MONOTONIC CONVERGENCE (TO WITHIN 10 ERROR) IN 8
ITERATIONS.

REDESIGN GUARANTEES SPECIFIED POINTING
PERFORMANCE BOUNDS llyll< ¢ OF LASER.

ACTIVE CONTROL REDUCTION 13%.

STRUCTURAL MASS REDUCTION: 8%.
SOFTER STRUCTURE EASIER TO CONTROL!
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APPENDIX A

Physical Data for the LCS members

OUTER DIAMETER (inches) 1.050
THICKNESS (inches) 0.050
ELASTICITY (psi) 16.0 x 10°
DENSITY (slugs/in®) 1.3469 x 10~

Coordinate Locations of the Pin Joints

NodeID | X-coordinate | Y-coordinate | Z-coordinate
10 0.0000 0.0000 0.0000
20 27.2315 19.5420 0.0000
30 27.2315 -19.5420 0.0000
40 6.2625 3.0310 45.7960
50 6.2625 -3.0310 45.7960
60 15.6005 0.0000 44.8420
Modal Cost Analysis

The modal cost analysis of an LCS finite element model using third order finite
elements to model the axial dynamics is given in Table A.1. The purpose of modal cost
analysis is to calculate the contribution of the i modal coordinate to a quadratic cost
function. For this analysis we took as our output vector, y(t), the relative translation of
each node of the laser platform to the remaining platform nodes. The control actuators
were idealized point-actuators applied at the center of each of the six structure members
which attach to the laser platform. We assumed that the intensity of the impulses applied
to the control channels was unity, and we weighted the components of the output vector
equally by choosing Q to be identity.

Table A.1 summarizes the results of the modal cost analysis, sorting the modes

with largest contribution to the modal cost to the modes with smallest contribution. Note

18



that the contribution to the modal cost does not increase monotonically with mode

number.

Table A.1

Summary of a modal most analysis of the LCS model

Mode Mode Modal Cost
6 1.9585e+03 | 8.2981e-05
4 1.8844e+03 | 6.0630e-05
5 1.9399¢+03 | 2.4989¢-05
1 9.7471e+02 | 1.4526e-05
2 1.3461e+03 | 6.5163e-06

12 7.0234e+03 | 1.3939¢-06
10 6.7798e+03 | 1.0512e-06
11 6.9992¢+03 | 4.4241e-07
7 4.0901e+03 | 1.7389¢-07
3 1.6946e+03 | 8.8014¢-08
8 4.5216e+03 | 3.9574e-09
9 5.5007e+03 | 3.4057e-10
14 1.7316e+05 | 2.4851e-14
13 1.1643e+05 | 2.0676e-14
16 2.9294e+05 | 8.3240e-16
15 2.7001e+05 | 5.2107e-16
17 4.4357e+05 | 4.1507e-17
18 5.9451e+05 | 3.8897e-17

19
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INTEGRATED STRUCTURE AND
CONTROLLER DESIGN

Robert E. Skelton
School of Aeronautical and Astronautical Engineering
Space Systems Control Laboratory
Purdue University
West Lafayette IN 47907-1293
Fax: (317 494-2351
sscl@ecn .purdue.edu

Abstract

Modern problems which require severe con-
straints on the dynamic response will demand a
theory for system design, integrating plant design
with controller design. Successive covariance ap-
proximation is proposed for integrating structure
and control designs.

1. Introduction

This paper suggests a need to develop a theory of
design for dynamic systems, subject to a specific

set of performance criteria. The objective is to

integrate the different steps in the design process
of controlled engineering systems. In the class
of problems to be treated, the system is subject
to uncertain but bounded errors in modeling, to
uncertain but bounded disturbances, and we as-
sume freedom in the choice of some parameters
that characterize the properties of each compo-
nent of the total system. For example, the design
procedure for the design of a controlled structure
could include: choice of the material, choice of
the sensors and actuators (dynamic range, type,
signal to noise ratio, location, number) choice of
the controller hardware/software (controller com-
plexity, memory, wordlength, quantization strat-
egy, control energy required). The design criteria
includes: bounds on both the static response and
the dynamic response, controller simplicity and
robust performance (in the presence of a specified
set of parameter uncertainties, failures, distur-
bances), determining component design require-
ments given sysiem design requirements, minimal

cost subject to a performance constraint. Finally,
the design theory must be implementable in a
workstation environment for rapid design capabil-
ity. For our special class of design problems, one
could develop a mathematical theory and compu-
tational algorithms which guarantee convergence
to a feasible solution. This contribution would
greatly assist or replace (for this special class of
problems) the ad hoc procedures currently used
in design.

This talk will present one approach called Succes-
sive Covariance Approzimation (SCA) for inte-
grated design of electromechanical systems. The
SCA technique is an iterative design of the electri-
cal/structural parameters and the active control
parameters, so that in each step the closed-loop
system performance closely approximates a pre-
determined set of desired performance objectives.
The design objectives are expressed in terms of
the closed-loop state covariance matrix. The ac-
tive control design step of the iterative design pro-
cess utilizes the newly developed techniques for
covariance control design using alternating pro-
jections. Covariance control provides a parame-
terization of all stabilizing controllers (hence, the
unifying theme here is that any controller can be
derived as a covariance controller) and recent re-
search by the author has parametrized all stabi-
lizing combinations of the free structural param-
eters and the control parameters. The structural
design step solves a convex optimization with re-
spect to the structural parameters. Each step
minimizes the distance between the closed-loop
covariance matrix and the set of desired covari-
ance matrices. The convergence of this itera-
tive structure/controller design method is guar-
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- limits of such thinking.

anteed by the theory [Skelton 1989; Wahlberg et
al. 1990; Rotea and Prasanth 1994; Gevers 1991;
Skeiton 1988; Li e¢ al. 1989; Lee et ai. 1994;
Muske and Rawlings 1993; Furuta et al. 1991].

2. Motivation

For 150 years the classical theories of physics, (un-
derstanding the physical phenomena), the clas-
sical theories of dynamic modeling, (developing
mathematical models, such as finite elements, for
the (idealized) phenomena) and the more recent
theories of control (developing feedback signals
based upon the model) have been built as separate
topics (separated by boundaries of convenience).
Modern engineering has essentially reached the
We believe that the
next revolution in engineering will come through
the systematic destruction of these disciplinary
boundaries, to allow these (artificially separated)
disciplines to cooperate to achieve performance be-
yond the capability of the isolated approaches. In-
deed, only in this way can one determine the ul-
timate capability of the engineering mission. Be-
fore this can happen, however, one must take a
more fundamental approach to the design, mod-
eling and control of dynamic systems.

A design methodology for controlled mechanical
systems should integrate the following subjects:

1) Plant design: Select materials, material
properties, and geometry.

2) Sensor and actuator selection: Select the
number and location of sensors and actu-
ators, and their precision (dynamic range,
signal to noise ratios), and cost.

3) Control design: Develop a control law to
guarantee that performance specifications
are satisfied for the closed-loop system.

4) Controller implementation: De-
termine controller precision and complexity
(wordlength, computational time delay) re-
quired in the control computer.

5) Manufacturing tolerances: Determine the
component precision required to guarantee
a system performance requirement.

6) Economical designs: Find the minimal cost
design subject to a specified performance
constraint. (precision of components is re-

. lated to cost).

21

We shall use the word “design” in this proposal
to denote such a unified treatment of these disci-
pliaes. A theory of design is presently not avail-
able. The ad hoc integration of disciplines cur-
rently required in design typically requires a very
experienced engineer to accomplish a good design.
A theory of design would allow good designs to be
obtained by less experienced persons, and such a
design theory could be taught in universities.

In the most general setting, this goal of develop-
ing a mathematical theory of design is too ambi-
tious. Ad hoc iterations will always be required
for the most general problems. However, by re-
stricting the problems we treat to a special class,
one can expect a fairly complete solution to the

design problem.

Finite Signal-to-Noise Models

Contributions toward a theory of design could be
developed using a new class of models, called FSN
(Finite-Signal-to-Noise) models, described as fol-
lows.

The output of a 5 milliwatt amplifier usually con-
tains less noise than the output of a 5 megawatt
amplifier. Even if the noise is white, classical ad-
ditive models of noisy signals do not capture this
effect. Consider that u(t) is the signal uncorre-
lated with w(t), the noise. The traditional white
noise model (for the continuous, scalar case) is

Ew(t)] = 0, Ew®)u(r)=0,t>r
€ [w(t)w(r)] Wi(t —r) (1)

where W is the constant or time varying noise
intensity. Let the variance of the signal u(t) be

U £ £u?(t). Then the intensity of the noise W is
constant with respect to the variance of the signal
U. Recently we have developed a new model of
linear stochastic processes, using “finite-signal-to-
noise” (FSN) models as follows. Assume that u(t)
and w(t) are uncorrelated as in (1), but that the
intensity W depends linearly on the variance of
the signal u(t),

W=Wy+oU . (2)

We define o~! as the “signal-to-noise ratio”
(SNR). We shall call (1), (2) the finite-signal-to-
noise FSN model of a noise source. The standard
noise model upon which LQG theory is based has
an infinite SNR, where W = W,. Now consider
Fig. 1 where six FSN sources are added.




e w,(t) is the actuator noise whose inten-
sity W, is linearly related to the variance
of the signal part of u(t): W, = W, +
o U = Wy + 03G? X, where for dynamic
controllers X, is the covariance of the con-
troller state, and G is the controller gain.

e w,(t) is the noise whose intensity depends
on the state covariance: W, = W,; +
o2X,, X, = plant state covariance. As
an example of this type of noise consider
that the noise component of turbulent wind
forces on a building is a function of the
state variables; such as the torsional dis-
placement of the building relative to the
wind velocity vector. For larger torsional
angles of attack the laminar flow becomes
more turbulent, creating a larger noise in
the lift component of the forces.

e w,(t) is the sensor noise whose intensity
is linearly related to the variance of the
measured signal z,(t) = mz,(t) : W, =
W,1 +02m2X, (sensor SNR = o71).

e w,(t) is the error in the input computation
to the controller. In a digital system this
would be the roundoff noise in A/D conver-
sion, W, = W, + o?m2X,.

o w_(t) is the error in controller state compu-
tation.

o wy(t) is the noise added by controller out-
put computation, W, = W, +¢3G?X.. In
digital controllers this would be roundoff er-
rors from D/A conversion.

A design theory must be able to trade component
precision with closed loop performance. Let X, G
denote the state covariance and control gain of
the closed loop system. We shall call any consis-
tent matrix pair (X > 0, G) a solution to the
FSN Covariance Control problem. The standard
Covariance Control Problem is defined by the case
gi=0fori=a,c,s,z.

It may be shown that any solution of the FSN
covariance control problem has a guaranteed sta-
bility margin in the sense that all eigenvalues of
the closed loop system lie to the left of —-;- 3 .

The only extension of this result beyond [Iwasaki
and Skelton, 1993; Skelton et al. 1994] is the
presence of o, > 0. If all ¢’s are zero, this is
exactly the result of [Iwasaki and Skelton, 1993;
. Skelton et al. 1994] which parametrizes all stabi-
lizing controllers of order n. = n,. It is possible
with very little additional effort to parametrize
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all controllers of order n. < n,, for both the con-
tinuous and discrete case, but we shall not state
those results here. When all o’s are 72, such
results can be found in [Skelton et al. 1994].

Alternating projections [Grigoriadis, 1994] can
be used to solve convex problems in the space
of symmetric matrices as follows. Consider the
State Covariance Approximation (SCA) problem
of minimizing the covariance error from a desired
covariance. For example, the set of all covariances
X such that CXC* < Y for some specified C and
Y is a convex set that could describe the “desired
set” Xy. Let the set of X satisfying of assignable
X (X achievable by some G) be denoted X,, and
the set of X satisfying X > 0 be denoted by Xpq.
The SCA problem can be stated as

H}énHX—Xdllp

subject to X € Xg N A, N Xpy. Then the compu-
tational problem is to find X, € A N &N Xy,
The controller is given in terms of X. The al-
ternating projection algorithm [Grigoriadis, 1994]
guarantees to find the intersection of convex sets.
If no such X exists the same algorithm finds
X € X, NApq that minimizes || X, — X4||p. Other
approaches to convex control problems are de-
scribed in [Iwasaki and Skelton, 1993; Skelton et
al., 1994; Grigoriadis, 1994; Boyd et al., 1994;
Geromel et al., 1993, Grigoriadis and Skelton,
1994b]. Analytical properties (performance, con-
trol design and robustness) of the FSN Covariance
Control problem should be studied.

Sensor/Actuator Selection

Most control texts begin with the assumption
that sensors and actuators are selected before
control design. Actually, the problems of mod-
eling, selecting what variables to measure, se-
lecting what variables to control, and select-
ing a controller are all interdependent problems,
with no available scientific procedure to integrate
them. Selecting better models and selecting bet-
ter sensor/actuator variables can sometimes yield
a more drastic improvement in robustness and
performance than simply using robust control
theory on the original model. (This is not a state-
ment against robust control but one to encourage
more effort on modeling).

It is well known that performance might be im-
proved by deleting a noisy actuator because the




noise has a direct path to the output, and hence
the controller can never make the noisy contribu-
tion zero. The contribution of a sensor neise to
the plant response can be made zero by zeroing
this sensor gain (in the controller)). Note that
the act of deleting the actuator cannot be accom-
plished by the LQG theory since the controller
design cannot delete the noise source, it can only
increase the control signal to try to reduce the rel-
ative effect of the actuator noise. (The Kalman
filter gain is related to the ratio of plant (actua-
tor in this case) noise to sensor noise, so an in-
crease in actuator noise will increase the Kalman
gain. The control gain remains constant since
it is not a function of the noise). Hence, LQG
theory increases the controller gain when an ac-
tuator noise increases. This might be exactly the
wrong thing to do from an engineering point of
view! Performance might be improved by delet-
ing the actuator, rather than increasing its con-
trol gain [Notris and Skelton, 1989; Chen and Se-
infeld, 1975; Ichikawa and Ryan, 1979; Goh and
Caughey, 1985; Grigoriadis and Skelton, 1994a].

Suppose the model of the plant and noise sources
are accurate. Let the admissible set of actuators
be an arbitrarily large number of actuators. The
following is an open problem.

e How many (noisy) actuators yield the best
closed loop performance (maximal accu-
racy)?

In the case of sensors the answer is known to be
the entire admissible set because the Kalman fil-
ter can set the gain to zero if the sensor is too
noisy. However in the case of actuators the an-
swer is not the entire admissible set. There is an
optimal number of actuators for the control of lin-
ear stochastic processes, but no available theory
reveals how many. (This number is not necessar-
ily the minimal number required for controllabil-

ity).

The conclusion of this section is that a theory
is needed to suggest which actuators are helping
and which are degrading performance. We call
“this the sensor/actuator selection problem.

A theory is also needed to determine the preci-
sion required (e.g. noise allowed) of each com-
ponent (sensor, actuator, A/D and D/A con-
verters) of the system to satisfy a given perfor-
mance constraint. The determination of compo-
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nent design specifications, given a system perfor-
mance specification is an important open prob-
lem. That is, given a system performaace con-
straint CXC* < Y, determine the required pre-
cision (o]!) of each component of the system.

Integrated Plant and Controller Design

The set of signal-to-noise ratios ¢! of the previ-
ous section is only one set of system parameters
that may be optimized. In some cases, (early in
the design phase of a project) the plant itself may
be redesigned for improved performance [Grigori-
adis and Skelton, 1994a]. For the structural sys-
tems in our mechanical system focus let p be a
vector of free parameters in the structure design

M(p)d +D(p)qa + K(p)q = B(p)(u + w)

Pq+Rq
Myx+v, x*=[q" q*]

y
z

where the parameters appear multilinearly

M(p) = E piM;
D(p) = Z piD;
K(p) = ZP-‘KI,' .

A convergent algorithm for integrating plant and
controller design is proposed as follows,

1. For a given p solve the standard covari-
ance control problem (e.g. by Alternating
Projections), see [Grigoriadis and Skelton,
1994b], to get G.

. For the given controller G solve the convex

problem
U;i,n [1X ~ X4l

Repeat fori=1,2,---
3. Return to 1 until convergence.

Convergence of this algorithm to the global opti-
mal solution is not guaranteed. In a recent ap-
plication of this algorithm a vibration isolation
problem (a space-based laser on a support plat-
form) is solved by reducing the control energy by
32% and the structural mass by 22% compared to
the original design by the manufacturer [Grigori-
adis and Skelton, 1994a]. This involved selection
of the cross-sectional areas of the composite struc-
tural members, and the control gains, to keep the
L, output response feasible.




3. Conclusions

We believe that the next era in controls will
be to extend the methods to include plant de-
sign, jointly with control design. This paper sug-
gests that convergent algorithmsshould be sought
for solving or approximating the FSN Covari-
ance Coantrol Problem, and the Economical De-
sign Problem. Some progress in this direction
would allow component design from a given sys-
tem performance requirement.
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Abstract

This paper considers the optimal control problem of minimizing control effort sub-
ject to maultiple p_gn‘ormance constraints on output covariance matrices Y; of the form
Y. <Y, where Y is given. The contributions of this paper are a set of conditions
that characterize global optimality, and an iterative algorithm for finding a solution
to the optimality conditions. This iterative algorithm is completely described up to a
user specified parameter. We show that, under suitable assumptions on problem data,
the iterative algorithm converges to a solution of the optimality conditions provided
this parameter is properly chosen. Both, discrete and continuous time problems are
considered.

1 Introduction
Consider the following linear time-invariant system

3,(t)
y,,(t)
z(t)

where z, is the state, u the control, w, represents process noise, and v is the measurement
noise. The vector y, contains all variables whose dynamic responses are of interest. The
vector z is a vector of noisy measurements.

Suppose that, to the plant (1.1) we apply a full state feedback stabilizing control law of
the form

Arxp(t) + B,u(t) + D;wr(t)
Cozp(t) (1.1)
Mpz,(t) + v(t)

u(t) = Ga,(t) , | (1.2)
or a strictly proper output feedback stabilizing control law given by
z.(t) = Acz.(t)+ Fz(t) (13)
u(t) = Gz.(t). )

Then, the resulting closed loop system is
z(t) = Az(t) + Duw(t)

y(t) [ zﬁ’((tt)) J = [ gz ] z(t) = Cz(t) - (14)

where for the state feedback case we have z = z, and w = w,, while for the output feedback
case we have z = [z z7]T and w = [wl vT]T. Moreover, formulae for A, C, and D are easy
to obtain from (1.1), and (1.2) or (1.3).

Consider the closed loop system (1.4). Let W, and V denote positive definite sym-
metric matrices with dimensions equal to the process noise w, and measurement vector z,
respectively. Define W = W,, if the state feedback controller (1.2) is used in (1.4), or
W = block diag[W,, V] if (1.3) is used in (1.4). Let X denote the closed loop controllability
gramian from the (weighted) disturbance input W='/2w. Since A is stable, X satisfies

0=AX + XAT+ DWDT . (1.5)
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Partition the performance output y, in (1.4), into y, := [y7,yT, ... yZ|7, where vi=Cize
R™ for i = 1,2,...,m. In this paper we are interested in finding controllers of the form
(1.2) or (1.3) that minimize the (weighted) control energy trace RC,XCT with R > 0, and
satisfy the constraints

Y=CXCT<V.,i=1,2,... m, (1.6)
where Vi >0 (i=1,2,...,m) are given and X solves (1.5). This problem, that we call the
the Output Covariance Constraint (OCC) problem, is defined as follows:

The roble -
Find a static state feedback or full order dynamic output feedback controller for system (1.1)
to minimize the OCC cost

Jocc = traccRC“XCZ-; R>0 (1.7)
subject to (1.5) and (1.6). O

The OCC problem may be given several interesting interpretations. For instance, assume
first that w, and v are uncorrelated zero mean white noises with intensity matrices W, >0
and V' > 0. That is, let £ be an expectation operator, and

€[w,,(t)] =0 ; E[wp(t)wg'(t -7)]= Wpé(7) , (1.8)
Ep®)] =0 ; EWT(t—1)]=Vé(r). :

Letting €u[] 1= lim: €[], and W = W, for the case of state feedback, or W = block diag
(Wp, V] for the output feedback case, it is easy to see that the OCC is the problem of
minimizing £, uT Ru subject to the output covariance constraints Y; := =Yi(t)yF(t) < Y.
As is well known, these constraints may be interpreted as constraints on the variance of the
performance variables or lower bounds on the residence time (in a given ball around the
origin of the output space) of the performance variables [10].

The OCC problem may also be interpreted from a deterministic point of view. To see
this, define the Lo, and £; norms

lilll, = supse yF(t)ui(t) ;
(1.9)
lwlf = fuT@u(d,
and define the (weighted) £; disturbance set
W:={w:R— R*and | W%} <1}, (1.10)
where W > 0 is a real symmetric matrix. Then, for any w € W, we have (17, 18]
lulll <75 i=1,2,...,m, (1.11)
and
luill% S [CaXClli s i=1,2,...,n, (1.12)

where n, is the dimension of u. (Here, & (-] denotes the maximum singular value and [Jii is
the i-th diagonal entry). Moreover, references [17, 18] show that the bounds in (1.11) and
(1.12) are the least upper bounds that hold for an arbitrary signal w € W.
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Thus, if we define Y, := I, €? in (1.6) and R := diag [r1,73,---,ra.] in (1.7), the OCC
problem is the problem of minimizing the (weighted) sum of worst-case peak values on the
control signals given by

Ne

Jocc = Z"-{:gg lluill2} (1.13)

=1

subject to constraints on the worst-case peak values of the performance variables of the form
sup [[yills, < €, i=1,2,...,m. (1.14)
we€W

This interpretation is important in applications where hard constraints on responses or ac-
tuator signals cannot be ignored; such as space telescope pointing or machine tool control.

Control problems related to the OCC problem defined here have been considered before
by several authors. See, for example, [6, 9, 5, 1, 3, 13, 16] for work in multiobjective optimal
control with quadratic cost functionals, [13, 14, 4, 19] for the so-called variance constraint
control problems, and [12] for the so-called generalized H; control problem.

In the above references, one may find two different approaches for solving this class of
optimal control problems. The approach based on solving the optimality conditions cor-
responding to the optimization problem at hand (4, 16, 19], and the approach based on
reducing the given problem to a finite dimensional convex optimization problem (1, 3, 12].

In this paper, we follow the approach initiated in [4, 19]. Here, we consider a more
general and realistic problem, i.e. the OCC problem, than the one studied in [4, 16, 19],
and provide an iterative algorithm for solving the optimality conditions corresponding to
this problem. Our main contribution is in the algorithm itself. This iterative algorithm is
completely described up to a user specified parameter. We show that the algorithm converges
to a solution of the optimality conditions (assuming one exists) provided the user specified
parameter is properly chosen. Both, discrete and continuous time problems are considered.

The paper is organized as follows. Section 2 provides optimality conditions for the
continuous-time OCC problem in the case of state feedback. These conditions comprise
one algebraic Riccati equation and one Lyapunov equation. The Riccati equation has a
forcing term depending on a matrix Q (which represents the Kuhn-Tucker multipliers) that
must be determined. An algorithm for finding this matrix Q is given, and its convergence
analyzed. Section 2 concludes with the extension of the state feedback results to the output
feedback case. Section 3 is the discrete-time version of Section 2. An example is presented
in Section 4 to illustrate the performance of the algorithm. Section 5 gives the conclusions
of this work.

The notation used in this paper is fairly standard. Given the continuous-time algebraic
Riccati equation

0=ATK + KA, - KB,R'BTK +CIQC,,

we say that K is the stabilizing solution if K = K7 satisfies the Riccati equation and
A, — B,R‘IBZ'K has all eigenvalues in the open left half plane. Similarly, given the discrete-
time algebraic Riccati equation

K = ATKA, - ATKB,(R+BTKBT)"'BTK A, + CTQC,,
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we say that K is the stabilizing solution if K = K7 satisfies the Riccati equation and
A, — B(R+ B,KBT)"'BTK A, has all eigenvalues in the open unit disk. Note that when
the (discrete or continuous) stabilizing solution exists it is unique. Moreover, if Q = QT > 0,
the stabilizing solution is positive semidefinite.

2 The OCC Algorithm for Continuous Systems

2.1 The OCC Algorithm for State Feedback

In this section we consider the case of state feedback. With the state feedback controller
(1.2) the closed loop system matrices in (1.4) are given by

A=4,+B,G; D=D,;C,=C,;C=G. (2.1)
The following theorem provides conditions for optimality in the state feedback case.
Theorem 2.1 Suppose there ezists a mairiz
Q" =block diag(Q1,Q5,...,Qu] 2 0; Q1 =Q;T e R~ ™ ; i=1,2,... m. (2.2)
such that the algebraic Riccati equation
0=AK+KA, - KB,R'BTK +CF@"C, (2.3)
has the (unique) stabilizing solution K*. Define |
G =-R'BTK", (2.4)
and let X* denote the unique solution of the Lyapunov equation
0 =(4,+B,G")X + X(4, + B,G")T + D,W, DT , (2.5)
and define ¥; = C:X"CT (i=1,2,...,m). Then, if
0=(Y;-Y:)Q;and ¥; <Y, (2.6)
for alli =1,2,...,m, we have that G~ given by (2.4) is an optimal solution to the OCC
problem defined in (1.7).

Proof: Let Q° be given by (2.2) and define the following LQ problem.

(%11}1) J(G,X) =trace RGXGT + _ trace (C;XCF - Y,)Q; (2.7
=1

subject to A, + B,G stable and
0 =(4+ B,G)X + X(A, + B,G)T + D,W, DT . (2.8)
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Using a simple completion of square argument, it is easy to see, from (2.3), (2.4) and (2.5),
that (G*, X*) solves (2.7).

Now let G denote a feasible controller (arbitrary but fixed) for the OCC problem. That
is, (A, + B,G) is stable and CiXCT <Y, (for all i = 1,2,...,m), where X is the closed
loop gramian corresponding to G. From the previous paragraph, we get that

Joce(G™, X*) = trace RG*X*(G")T + YL trace (CXCT -Y,)Q;
< trace RGXGT + L0, trace (C;:XCT — Y.)Q; (2.9)
< trace RGXGT .
Using the fact that 0 = (C,:X*CT - ¥,)Q;, from (2.9), we obtain
trace RG"X*(G")T < trace RGXGT . (2.10)

This last inequality together with the fact that G* is also feasible for the OCC problem,
because C;X*CT < Y, (for all 1 = 1,2,...,m), imply that G* is a solution to the OCC
problem. O

From (2.3) and (2.4), it follows that the solution of the OCC problem with static state
feedback is an LQ controller with a special choice of output weighting matrix Q. Therefore,
our algorithm for solving the conditions in Theorem 2.1 only needs to iterate on Q.

Before giving the algorithm we would like to mention that the existence of Q" satisfying
the conditions of Theorem 2.1 is necessary in certain cases. For example, from Theorem 5.8
of [5], it follows that, when the constraints in (1.6) are scalar, and (for example) the pairs
(C1,45), -+, (Cm, A;) do not have imaginary axis unobservable modes, then a diagonal Q°
exists if a solution to the OCC problem exists. See also reference [3]. The case of block
diagonal matrices @ does not seem to appear in the published literature. It should be
noted that the emphasis of the present paper is an algorithm for computing Q* (and thus a
controller that solves the OCC problem) under the assumption that a matrix Q* satisfying
the conditions of Theorem 2.1 exists. This algorithm is given next.

To give this algorithm we need to introduce the following operator. Let M denote a real
symmetric matrix and suppose that '

M = (U, U] block diag [E,, E.] (U3 Us)T (2.11)

is the (real) Schur decomposition of M, where E, and E, are diagonal matrices containing
the strictly positive and nonpositive eigenvalues of M, in decreasing order, respectively; and
[Ur Ua] is an orthogonal matrix. Define

if M <O

otherwise .

; (2.12)

?

0

Note that if M is a symmetric matrix with block diagonal structure, the operator P[]
preserves the block structure, i.e., P[M] has the block structure of . '
The following algorithm for solving the conditions in Theorem 2.1 is the main contribution

of this paper.

The OCC Algorithm
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1) Given A, B,, D,, Cp, W,, R, V' = block diag(¥;,Ys,..., Vo], an initial point Q(0) =
block diag [Q1(0), @1(0 ) .+, @m(0)] > 0, and consta.nts a>0,0<3<l,let;j=0
and go to 2).

2) Compute K(;j) 2 0 and G(;) by solving

0
G(7)

TK(; A, - K(j)B,R'BTK T
RO K=K D+CTA0G 4y

3) Compute X(5) by solving

0 = [4, + B,G()] X (7) + X(7)[A5 + B,GG)T + D, W, D7, (2.14)
4) SetY,(j)=C:X(j)CT fori=1,2,...,m
5) Let Y*(j) = block diag [Yi(Q(7)), Y2(Q(7)): -, Ym(Q()))], and

QU +1) = BQU) + (1 - B)PIQ() + «{Y*(j) -
J=J+1l,goto2). 0

Several stopping criteria may be used to guarantee that the OCC algorithm terminates in
a finite number of steps. In this paper, we propose to stop the algorithm whenever the first
equation in condition (2.6) is satisfied to a given numerical accuracy. This can be achieved
by checking if the inequality

2NTG) -7l < e | (2.16)
s=1
holds, where € > 0 is the specified tolerance. Inequality (2.16) must be tested after step 4).
If (2.16) holds, we stop the algorithm, and declare G(5), Q1(5), @2(7), and Qm(5) to be a
numerical solutlon to the OCC problem; if (2.16) does not hold, the algorithm continues.
The rest of this section is devoted to show that, under the assumption

(Al) (A, By) is stabilizable and A, has no eigenvalues on the imaginary axis,

if there exists @~ satisfying the conditions in Theorem 2.1 then the OCC algorithm will find
it, provided « is properly chosen. More specifically, under the assumptions mentioned, we
will show that the sequence of matrices {Q(j)}%2, generated by the OCC algorithm (see
equation (2.15)) has a limit Q which satisfies all the conditions of Theorem 2.1. Thus, the
OCC algorithm converges to a globally optimal solution to the OCC problem. Note that
the existence of the limit Q implies that, given any € > 0, there exdsts an integer j such that
inequality (2.16) holds.

Note that the OCC algorithm is well-posed in the sense that the unique positive semidef-
inite solution K(j) to the Riccati equation (2.13) and the solution X (j) to the Lyapunov
equation (2.14) exist at each iteration. This follows from assumption (A1) and the fact that,
at each iteration, Q(7) > 0. As is well known [7], since (4,, B,) is stabilizable and the pair
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(Q(5)*/3C,, A,) has no imaginary axis unobservable modes, K(j) > 0 exsts, it is unique,
and it renders A, — B, R~'BTK(j) asymptotically stable.
To establish our results we need to introduce the following operators

Bl = 8Q+(1-8)TIQI;
TIQ] := P[Q+a{Y*Q)-T),

where a > 0 and 5 € (0,1) are parameters of the OCC algorithm. Note that, with this

notation, the sequence of matrices Q(;) generated by the OCC algorithm is {7;,’[@(0)] 2o
where Q(0) > 0 is block diagonal.

(2.17)

Theorem 2.2 Consider the OCC algorithm and suppose that a > 0,0< B8 < 1, and
that assumption (A1) holds. Suppose that the algorithm converges, that is, the sequence
{77 [Q(0)]}2, converges to Q*. Then Q" := block diag (@1,Q3, -..,Qr] satisfies the suf-
ficient conditions in Theorem 2.1 for optimdlity. In other words, if the OCC algorithm
converyes, the resulting controller u=—R"‘B§K‘:z, where K* solves (2.9), is a global op-
timal solution to the given OCC problem, where Q* is the limit of the convergent sequence

{TF1Q(0)]}2,.

The proof of Theorem 2.2 requires the following lemma.

Lemma 2.1 For any symmetric matrices M = MT and N = NT of the same dimensions,
the following statements hold:

1. PIM+ N]=M ifand only if M >0, N <0 and MN = 0.
2. |[P[M] - P[N]|| £ IM — N||, where || -|| denotes the Frobenius norm.

Proof: First, we shall show the necessity part of 1. The property M > 0 is a direct
consequence of the definition of P[-] in (2.12). Next, we show that N < 0 and MN = 0. Let
M + N have the Schur decomposition

M+N (U Us)block diag[E, , E,)[Uy Us)T

= U,E,UT + U,E,UF, (2.18)
where E, >0 and E, < 0. Thus, from (2.12) and P[M + N] = M we obtain
PM+ N =U,EUT =M. (2.19)
Subtracting this last equation from (2.18) we obtain
N =UEUT <. (2.20)

Since UTU; = 0, from (2.19) and (2.20) it follows that
MN = U\E,UTULE, UT =0.

Second, we shall show the sufficiency part of 1. Let M > 0 and N < 0 be given and
suppose that MV = 0. Note that if either M or N is zero, the sufficiency of property 1)is
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trivial. Now suppose that M # 0 and N # 0. The real Schur decompositions of M and N
are

M =U,E,UT ; N=U,EUT,
where £, >0, E, < 0, U;IU1=I, U;TUg = [ and UITU2=O. Then,

PM + N =PV, E,UT + EUT ) =V E,UT = M . (2.21)
Finally, we show property 2). Let M and N have the following Schur decompositions:
M = [U, Us)block diag(E, , E.)[U, Us)T; E,>0; E, <0:

N = [U1 ﬁg]block dz'ag[E',, En][Ul ffz]T ; E', >0; E, <0. (2.22)
Let
M+ = p[xm = U1E9U1T> 0,
M~ = U;E.UT <0,
Nt = PN =U,E,UT >0, |
N~ = 023,,027' <0. \ |

Note that M = M+ + M~ N =Nt + N=, M*M~ =0, and N*N- = 0. Then,

(|M - N|? [((M* = N*)+ (M- -N7)|?
IM* = N*P+||M- - N-|? (2.23)
—2traceM~N* — 2traceMt N~ o

Since —traceM~N* > 0 and —traceM+ N~ > 0, we obtain
|M = N|* 2 |M* - N*|* = |P[M] - P[N]|I?, (2.24)
which completes the proof. O
The following lemma, essentially due to [2], is also required for the proof Theorem 2.2.

Lemma 2.2 Consider the plant defined in (1.1) and suppose that assumption (A1) holds.
Let K denote the unique stabilizing solution to the Riccati equation (2.3) with Q = QT > 0.
Then K(Q) is a real analytic function of Q = QT > 0.

Proof of Theorem 2.2: By Lemma 2.2, the state feedback control gain G(Q) in (2.4) is
a continuous function of Q@ = QT > 0. Hence, the block output covariance matrix Y*(Q) is
continuous with respect to Q@ = QT > 0. Since the operator P[] is continuous, we obtain
that 7[-] and Tp(] are well defined and continuous for any @ = QT > 0. Suppose that

{77[Q(0)]}24 converges to Q*, i.e.,
lim TQO)] = Q". (2.25)

Since # € (0,1) and P[] preserves the block structure, we may conclude that, for each j,
77[Q(0)] has the correct block diagonal structure and it is positive semidefinite. Thus, Q* =

block diag [Q7,Q3,- - -, Qp] and @ > 0.
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From the continuity properties of 73, we obtain
T3(Q°] = 7;,{ lim T 1Q(0)]} = hm T77Q(0)] = Q. (2.26)
That is, @ is a fixed point of T3] Since 8 # 1, from (2.17), we get

Q" =T[Q] =P +{Y*Q)-T"}]. (2.27)
Let M = Q" and NV = ofV*(Q") - 76] From Lemma 2.1, we conclude that

a[Y¥ Q) =Y <0 and aQ*[Y*(Q")-T']=0.

Since @ > 0, the above inequalities imply that Q* satisfies (2.6). Hence, Q" satisfies the
conditions in Theorem 2.1. This completes the proof. O

The following result shows that there is always a choice for the parameter « in the OCC
algorithm that will guarantee its convergence, provided the conditions in Theorem 2.1 admit
one solution.

Theorem 2.3 Suppose that assumption (A1) holds. Assume also that there ezists Q° sat-
isfying the conditions in Theorem 2.1. Then, given any Q(0) > 0 € R™*™ with the appro-
priate block diagonal structure, there ezists an a® > 0 such that if 0 < a < a", the sequence
{7;, [Q(0)]}2, will converge to some Q > 0 satisfying the conditions in Theor*em 2.1. That
is, the OCC algorithm will converge to a global optimal solution of the given OCC problem.

In order to prove Theorem 2.3, we need a few intermediate results and definitions. .Let
Q = QT > 0 be given and let K denote the (unique) stabilizing solution to

0=ATK+ KA, - KB,R'BTK +CTQC, . (2.28)

Then, with the state feedback gain G = -—R'IBTK the I-th output covariance of the closed
loop ¥; (1=1,2,---,m) is given by

Y, =CXCT,
where X is the unique solution to
0=(4+B,G)X + X(4, + BPG)T + DPWPD;]; : (2.29)
Now, let
Q = block diag(Q1, Qs, .-, Qm] ; Qi =[] € R™*™ (2.30)
and
Y?® = block diaglY,,Ys, -, Yn. (2.31)

Below, we compute the derivative of Y* with respect to the weighting matrix Q given in
(2.30). We do this using vector notation. Let Q be given by (2.30) and define the operator

“svec by

svec[Q]=| . | eR", (2.32)



where

i i i T
P 9 H i 9 i i 9m,m;
¢ :=v2 [j;_,qu,...,qlm'.,%,qm,...,q,m,,..., i } . (2.33)

Note also that the operator svec defined in (2.32) preserves the Frobenius norm; i.e., if Q is |
given by (2.30) we have '

1QI] = llsvec[Q]]] . (2.34)

Moreover, sevc[:] is a linear operator.
Let
y = svec[Y?] (2.35)

where Y* is given by (2.31). Define also the following symmetric matrix
E; = svec™[e)], (2.36)

where e; € R" has a one in the i-th row and zeros elsewhere, and svec™! is the inverse of
the operator svec.

Lemma 2.3 Consider the system defined in (1.1) and suppose assumption (A1) holds. Let
Q = QT >0 be given by (2.90) and define q = svec[Q]. Lety be given by (2.35). Then, the
partial derivative of y € R™ with respect to g € R™ is

dy

Frie —[Hij] = —[2trace(P.B,R'BIP;X)]; i,j = 1,2,...,n, (2.37)

where P; is the unique solution to
0 = P(A4, + B,G) + (4, + B,G)TP, + CTE,C, (2.38)

with E; given by (2.36). Moreover, if Q = QT > 0, the matriz-valued function H(Q) = [Hij]
is continuous and it satisfies H(Q) > 0.
Proof: Let y; denote the i-th component of y. From the definition of the operator svec (see,
for example, (2.32)) it follows that

yi = trace(E;C,XCT) . (2.39)
Using the Lyapunov equations (2.29) and (2.38) it follows from (2.39) that

yi = trace(P.D,W,DT), (2.40)
where F; is the solution to (2.38). Hence, from (2.40), we get

By

= trace(P;D,W,DT), (2.41)
dg; |

where g; is the j-th component of q and P; = %-
7
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Now to generate F;, differentiate equation (2.38) with respect to g¢; to obtain
0 = P,(4, + B,G) + (4, + B,G)TP,

- P,-B,R“BTQE - 91-{-3,3-‘33 P, (2.42)

" og;  0q;
From the Riccati equation (2.28) and the Lyapunov equation (2.38) we get

_ 0K
dg; '

where F; solves (2.38) with the “E-matrix” equal to E;. Hence, from (2.42), we obtain

P

P; = - [ expl(4,+ B,G)TH[PB,R BT P,
+P; B, R~ Bl P]exp[(A, + B,G)t]dt. (2.43)
Finally, from (2.29), (2.41), and (2.43) we obtain
8
-a—Z = ~[H;;] = ~[2trace(P.B,R"' BT P, X)] , (2.44)

which gives (2.37).
The continuity of H(Q) follows from the fact that, on the set of positive semidefinite
matrices @, the matrix-valued functions P., P;, and X are all continuous. Note also that

H; = trace (P.B,R'BTP;X)
= < XY*PB,R7* X'*P,B,R7'* > |

where < M, N >= trace MNT is the standard inner product on the space of matrices R
where n. and n, are dimensions of the plant states and controls. Thus, H is of the form

H; = [<X'*PB,R'* X'V*PB,R*>] (2.45)

which shows that H > 0. O |
The following results may be fourd in [11], see Proposition 3.2.3 and Proposition 12.3.7.

Lemma 2.4 Assume that F: R™ — R is Frechet-differentiable on a conver set T’y C R".
Then for any z and y € Ty,

I7() = F@)l < sup 7{Flz+1t(y ~ 2=~y (2.46)
where F'(-) denotes the Frechet-derivative of F(-), and &[] denotes the mazimum singular
value of [].

Lemma 2.5 Suppose that T : R™*™ — R™*" is nonezpansive on the closed, convez set
Dy. That is, for any z,y € Dy, we have

I7(y) = T(2) <y — =l - (2.47)
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Assume, further, that TDy C Dy and that Dy contains a fized point of T. Then for any
B € (0,1) and 2% € Dy the iteration

=B+ (1-8)T(z*); k=0,1,..., (2.48)

converges to a fized point of T in D,.

Proof of Theorem 2.3: The proof of Theorem 2.3 consists of two steps. First, we show
the nonexpansive property of operator 7 defined in (2.17). By assumption, there exists Q-
satisfying the conditions in Theorem 2.1. Define a subset of R™*™ as follows

Dy = {@>20€ R™*™ :Q = block diag(Q1,Qz, ..., Qm]
and||Q — Q|| < 11Q(0) — Q°[I} . (2.49)
where n, is the dimension of y,, and Q(0) is the initial output weighting matrix for the OCC

algorithm. It is obvious that the set Dj is compact (i.e., closed and bounded) and convex.
Let T/, be a set defined by

Do:={q=svec[Qe R : Q € Dy} . (2.50)

It is clear that T’ is convex, for svec[] is a linear operator and D is convex. Let g € D,

and define y(q) = svec[Y*(Q)], and

Fla=g+ay(q)- (2.51)

Note that F[-] is well-defined and Frechet-differentiable, with respect to g, in 7. In fact,
from Lemma 2.3, it follows that the Frechet derivative of F[] is

Flg)=1-<aH(q), (2.52)

where H(q) is defined in (2.37). (Here, we think of H as a function of ¢ = svec[Q] instead
of a function Q.)

Now, let Q* and Q* in Dy be given. Define ¢ = svec[Q*] and ¢* = svec[Q¥]. Then,
since svec(] preserves the Frobenius norm, we have

ITIQI-TIQ Il = [IPIQ" — a{Y*(Q") = T'}] — P[Q* — o{Y*(Q¥) - 7*}]]|
1Q* — @ — a[Y*(Q") - Y*(Q4)l]
llg* = ¢* — aly” —y*]ll,

1)
()]
W

A

where y* 1= svec[Y*(Q*)] and y* := svec[Y*(Q*)]. Since ¢* and ¢* belong to T, using
Lemma 2.4, we have
= |17l - Fl"ll .
< sup F{F[tg" + (1 - t)¢*]lllg" — ¢*||
o<t<1

sup G/ — aH{[tg" + (1 - )¢*}ll¢" - ¢*]  (2.54)

0<t<1

" — ¢* — afy” — ¥
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Since H is a continuous function over the compact set T, there exists an a* > 0 such that
for any ¢* € Do, ¢* € D/g,and 0 < t < 1, we have

{H[tq" + (1 - t)¢"]} < 2/a". (2.55)
Thus, since for any ¢* and ¢* € T, and any t € [0, 1], H[t¢" + (1 —t)q*] > 0, we have
| sup {/ — aHftg" + (1 — t)¢*]} < 1 (2.56)
0<t<1

for any a < a®. Therefore, using (2.53) and (2.54), for any a < a* we obtain
ITQ] - T[Q ]Il <ll¢ = ¢*ll =11Q" — @I: (2 77)

Hence, for any a < a®, the operator 7 is nonexpansive on D. Replacing Q* by Q* proves
that for any Q € D,

17101 - TR < 1Q - QI £ 11Q(0) = @7I- (2.38)

Now, using Lemma 2.1 and the fact that Q* satisfies the conditions of Theorem 2.1, we
conclude that 7[Q*] = Q*. This equation and (2.58) imply

I71Q1 - @l < 1Q(0) — @1, (2.59)

therefore, T[Q] € Dy.
Second, we shall show the convergence of the OCC algorithm, that is, the convergence of
the sequence {7[Q(0)]}3,. Since TD, C Dy, D, is convex, and it contains a fixed point of

T, from Lemma 2.5, we obtain that the sequence {7:,’[(2(0)] 720 generated by the iteration
QG +1) = T[QU)] = AQG) + (1 - AYTIQ()] (2.60)

converges to a fixed point of 7 in Dj, say Q The fact that C:) satisfies the sufficient conditions
in Theorem 2.1 is the direct consequence of Theorem 2.2. O

2.2 The OCC Algorithm for Full Order Dynamic Feedback

The extension of the state feedback case to the full order dynamic feedback case is straight
forward. In fact, the state feedback OCC algorithm can be applied to solve the full order
dynamic feedback OCC problem. Here, for system (1.1), we assume that assumption (Al)
holds and that

(A2) (M,, 4,) is detectable.

As is well known [7], under assumption (A2), there exists a unique matrix X that satisfies
the Riccati equation

0=AX+XAT - XMTV'M,X + D,W,D¥ (2.61)
P P 4 P

and A, — XA/I;'V'I is asymptotically stable. Moreover, X > 0. With this matrix X, we
define

F=XMIV'. (2.62)
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Theorem 2.4 Consider the plant defined in (1.1). Let X and F denote the matrices in
(2.61) and (2.62). Suppose there erists a matriz

Q" = block diag[Q},Q5,..., Q0] 205 QT =QT € R™ ™, i=1,2,...m, (2.63)
such that the algebraic Riccati equation
0=ATK + KA, - KB,R'BTK + CTQC, (2.64)
has the (unique) stabilizing solution K*. Define
G=-R'BIK", (2.65)
and let X" denote the unigue solution to the Lyapunov equation
0= (4, + B,G)X + X(4, + B,G)T + FVFT | (2.66)
and define Y; = Ci(X + X*)CT (i =1,2,...,m). Then, if

0=(Y;-Y.,)Qand Y; <Y; (2.67)
foralli=1,2,...,m, the dynamic controller
z.(t) = (Ap+ B,G—FM,)z.(t) + Fz(t) (2.68)
u(t) = Gz.(¢) -

is an optimal solution to the OCC problem defined in (1.7).

A proof of this theorem may be obtained by combining Theorem 2.1 in this paper, and
Lemma 4.2 and Theorem 4.1 in [12]. The result in [12] shows how to reduce the OCC
problem (and other ?;-like problems) with output feedback to an equivalent problem with
state feedback. .

Note that the matrices X and F in (2.61) and (2.62) do not depend on the weighting
matrix @°. To find a matrix Q* satisfying the conditions in Theorem 2.4, we can use the
OCC algorithm given in Section 2. This requires that, in the OCC algorithm, we replace
D,y W,,and Y; by F,V,and ¥; — C'.-XC?, respectively.

3 Discrete-Time Version

The discrete-time version of the OCC problem is very much like the continuous-time case.
Here, we give the definition of the OCC problem and the main results.
Consider the following discrete system

Zp(k+1) = Ayz,(k) + Byu(k) + Dyw,(ky
Yo(F) = Cozp(F) (3.1)
z(k) = M,z,(k)+v(k).
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Suppose that to the plant (3.1) we apply a full state feedback stabilizing control, i.e.,
u(k) = Gz(k) (3.2)
or a strictly proper stabilizing control

z(k+1) = Acz(k)+ Fz(k
u(k) = Gzc((k). ) (3.3)

Then the closed loop system has the following form
z(k+1) = Az(k)+ Dw(k)
= ¥»(k) _| G - (3.4)
y(k) = [ u(k) ] = [ C. z(k) = Cz(k),
where the definitions of matrices A, B, C and vectors z, w, y are as in the continuous-time
case.

As in Section 1, let W, > 0 and V > 0 denote symmetric matrices with dimensions
equal to the dimensions of w, and z, respectively. Define W = W, if (3.2) is used in (3.4),
or W = block diag[W,, V] if (3.3) is used. Let X denote the closed loop controllability
gramian from the input W=/2w. Since A is stable, X is given by

X = AXAT+ DWDT . (3.5)

As in the continuous-time case, we seek a solution to the following optimal control prob-
lem:

The Discrete-Time OCC Problem
Find a state feedback stabilizing controller (3.2) or a strictly proper output feedback stabi-
lizing controller (3.3) for the system (3.1) to minimize the OCC cost

Jocc = traceRC,XCT , R>0 (3.6)

subject to
=CXCI <Y:i;i=1,2,...,m, (3.7)

where X is given by (3.5). O

The discrete-time OCC problem has interpretations similar to the ones of the continuous-
time case. For example, the discrete-time OCC problem may be interpreted as the problem
of minimizing a weighted sum of the worst-case peak values of the control signals u; subject
to constraints on the worst case peak values of the response y;, when the disturbance w is
unknown but has bounded energy. This is because, as in the continuous-time case, discrete-
time gains from £; to £ may also be computed using controllability gramians [18].
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3.1 State Feedback Case

In this sub-section we consider the case of state feedback. The following theorem provides
conditions for global optimality. Its proof is similar to that of Theorem 2.1 and it is omitted.

Theorem 3.1 Suppose there ezists g matriz
Q" = block diag[Q1,Q3,...,QR] 2 0; QI =Q:T e R™*™ ; i=1,2,... m. (3.8)
such that the algebraic Riccati equation
K = AJKA,—- ATKB,(R+BTKB,)"'BTKA, + crQec, (3.9)
has the (unique) stabilizing solution K*. Define
G =—(R+BJK"B,)'BTK"4,, (3.10)
and let X* denote the unique solution of the Lyapunov equation
X =(4,+ B,G")X(4, + B,G")T + D,W, DT , (3.11)
and define Y; = C,.X*CT (1=1,2,...,m). Then, if
0=(Y;-Y;)QiandY; <Y, , (3.12)

forallt =1,2,...,m, we have that G~ given by (3.10) is an optimal solution to the OCC
problem defined in (3.6). ,

The following algorithm may be used to find a matrix Q*, and consequently a matrix G*
for the OCC problem, satisfying the conditions in Theorem 3.1.

The Discrete-Time OCC Algorithm

1) Given 4, B,, D,, C,, W,, R, Y; = block diag(Y1,Y3,...,Y ], an initial point Q(0) =
block diag[Q:1(0), Q2(0),...,Q~(0)] > 0, and constants a > 0, 0 < <l let;j =0
and go to 2).

2) Compute K(5) > 0 and G(j) by solving
K(7) = AJK(7)A,+CIQ(5)C,

—ATK(j)By[R+ B] K(7)B,]™ B} K (j)4, (3.13)
G(j) = —[R+ BIK(j)B,]*BIK(j)A, . ‘
3) Compute X(j) by solving
X(7) =4, + B,G(5)X(j)[4y + B,G(7)|" + D,W,DT. (3.14)

4) SetYi(j)=CiX(j)CT fori=1,2,...,m.
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5) Let Y°(j) = block diag[¥i(Q(4)), Y2(Q()). - -, ¥ (Q())], and

QU +1) = 8Q() + (1 - APIQ() + a{Y?(j) = 7}, (3.15)
J=J+1, g0 to2).

In (3.15), the operator P[] is as defined in (2.12). O

The same stop criterion as the continuous-time case is proposed for the discrete-time OCC
algorithm. That is, equation (2.16) needs to be tested after step 4) for a given tolerance
¢ > 0. If (2.16) holds, G(j), Q:(5), Q2(j), and Q@m(J) are numerical solutions for the given
OCC problem; else, the algorithm continues.

In the rest of this section, we will assume the following:
(A3) (A, B,) is stabilizable and A4, has no eigenvalues on the unit circle.

Note that the discrete-time OCC algorithm is well-posed in the sense that the unique posi-
tive semidefinite solution K(j) to the Riccati equation (3.13) and the solution X(j) to the
Lyapunov equation (3.14) exst at each iteration. This follows from assumption (A3) and
the fact that, at each iteration, Q(;) > 0. As is well known (8], since (A,, B,) is stabilizable
and the pair (Q(7)!/2C,, A4,) has no unobservable modes on the unit circle, K(7) > 0 exists,
it is unique, and it renders 4, — B,(R + BfK(j)B,)"Bg'K(j)A, asymptotically stable.

A close examination of the proofs of the continuous-time results given in Theorems 2.2
and 2.3 reveals that the convergence property of the continuous-time algorithm follows from:

i) The properties of the operator P[] given in Lemma 2.1.

ii) The properties of the stabilizing solution to the continuous-time Riccati equation given
in Lemma 2.2.

iii) The formula for the derivatives of the output covariance matrices Q) v (@), ...
Y (Q), with respect to Q, given in Lemma 2.3.

Certainly, property i) above holds in the discrete-time case because the operator P[] is
the same. Also, it is relatively easy to show that, under assumption (A3), property ii) extends
to the discrete-time setting. Finally, property iii) above also holds in the discrete-time case,
provided that the Lyapunov equation (2.38) is replaced by its discrete-time counterpart, and
the matrices R and X in (2.37) are replaced by R+ B;KBP and X — DPW,DE, respectively.
Thus, we may now conclude the following result.

Theorem 3.2 Suppose that the assumption (A3) holds. Assume also that there ezists Q*
satisfying the conditions in Theorem 3.1. Then, given any Q(0) > 0 € R™*™ with the
appropriate block diagonal structure, there ezists an a® > 0 such that if0 < a < a°, the
sequence {TJ[Q(0)]}52, will converge to some Q > 0 satisfying the conditions in Theorem
3.1. That is, the discrete-time OCC algorithm will converge to a global optimal solution of
the given OCC problem.
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3.2 Full Order Dynamic Feedback

As in the continuous-time case, the discrete-time state feedback results can be readily ex-
tended to solve the discrete-time OCC problem with output feedback.
Consider the system (3.1) and suppose that

(Ad) (M,, A,) is detectable.

Then, there exists a unique matrix X that satisfies the Riccati equation

X = AXAT - A XMT(V + M, XM])"'M,X AT + D, W, DT (3.16)
and A, - A,)E'x‘vf,r(v + M,)-(Mg')“‘w, is asymptotically stable; see, for example, [8]. More-
over, X > 0. With this matrix X, we define

F=AXMI(V+MXMI)™. (3.17)

The next result gives a solution to the OCC problem with strictly proper output feedback
controllers, the proof follows the continuous-time case and it is omitted.

Theorem 3.3 Consider the plant defined in (9.1). Let X and F denote the matrices in
(8.16) and (3.17). Suppose there ezists a matriz

Q" =block diag[Q],Q5,...,Q0] 20; @ =Q;T € R™*™ ; i =1,2,....m, (3.18)
such that the algebraic Riccati equation

K = AJKA,— ATKB,(R+BTKB,)"'BTK A, + CTQ"C, (3.19)
has the (unique) stabdilizing solution K*. Define
G=-(R+BIK'B,)"'BTK"4,, (3.20)
and let X* denote the unigue solution to the Lyapunov equation
X = (A, + B,G)X (4, + B,G)T + F(V + M,XMTF)FT, (3.21)
and define Y, = Ci(X + X*)CT (i =1,2,...,m). Then, if
0= (Y -Y)Qand ¥; < ¥ (3.22)
forall i =1,2,...,m, the dynamic controller

z(k+1) = (A, + B,G - FM,)z (k) + Fz(k)
u(k) = Gz.(k)

is an optimal solution to the OCC problem defined in (3.6).

(3.23)

Note that, as in the continuous-time case, the computation of X and F are independent
of the selection of the output weighting matrix Q. Hence, we can apply the discrete-time
OCC algorithm with state feedback to solve the discrete-time full order output feedback OCC
problem under the assumption that the optimal solutions are strictly proper. This requires

~ that in the algorithm given in Section 3.1, we replace D,, W,, and Y; by F, V + M,)-{}v{pr,

and ¥; - C;XCT, respectively.
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4 An Example

We consider the continuous-time OCC problem defined in (1.7) for the plant (1.1) with the
following system matrices:

[0 1 0 0 0

A, = | =1 —01 1 yBp=1{0|; Do=1|0]: (4.1a)
L0 0 -10 1 1

M, = [110]; | (4.1b)
[1 05 0

C, = |0 0 05 (4.1¢)
(11 o0

Both the process noise w, and the measurement noise v are scalar variables, while the
performance variable y, has three components. The weighting matrices required to define
the OCC problem (1.7) are taken to be

W,=1,V=00l,and R=1. (4.2)

Below, we consider two different OCC problems. These two problems differ in the grouping
of the performance variables y; used to define the constraints (1.6). For each problem, we
consider both state-feedback and dynamic output feedback.

4.1 Problem 1

Here, the OCC problem has the performance constraints
¥, <0035 , ¥;<0.050 , Y53 <0.050 , (4.3)

where 11, 13, and Y3 denote the output covariance (1 x 1) matrices introduced in (1.6),
corresponding to the first, second, and third performance variable respectively. Note that
this OCC problem can be also solved by the ellipsoid algorithms given in 1, 3, 12] or the
quadratically convergent algorithms given in [16].

First, we consider the case of state feedback. We use the algorithm described in Section
2.1 with the following parameters

Q) =1I , =01, e=10"° . (4.4)

To asses the effect of the user-specified parameter a, we ran the the algorithm with
1.0 < @ < 7.25. Figure 1 shows the number of iterations required to meet the stopping
criteria of the algorithm versus @. Clearly, as a approaches 1 or 7.25 the iteration number
increases. From Figure 1, it follows that there exists an optimal « which uses the least
number of iterations. Finding such an optimal « in terms of the system and specification
matrices remains an open problem.

Table 1 shows the results of running the algorithm with a = 4.5. Both state and output
feedback cases are computed. In the state feedback case, G denotes the state feedback gain.
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Figure 1: Iteration Number verses a

In the output feedback case, G denotes the controller output matrix, see (2.65) and (2.68).
The controller input matrix F is precomputed according to (2.62). In this case we have

F =[0.4412 0.7633 0.4796 |7 . - (4.5)
From Table 1, we can see that both controllers are feasible, for Y; satisfies the bound Y; < ;.

The only active constraint is the third one, i.e. Y3 = Y3; hence, the corresponding output
weight Q3 is nonzero. As expected, the optimal cost Jocc with output feedback is bigger

than that with state feedback.

4.2 Problem 2
Now, the OCC problem has the performance constraints
Y1 <0035 ; ¥, <0050 x I, , (4.6)

where Y denotes the (1 x1) output covariance matrix corresponding to the first performance
output, and ¥; the (2 x 2) output covariance matrix of the second and third performance
outputs grouped together.

Table 2 shows the results of running the algorithm with a = 30 for both state and output
feedback cases. The other parameters required by the algorithm are those in (4.4). For the
output feedback case the input gain matrix F of the controller given in (4.5).

From Table 2, we can see that both controllers are feasible. As expected, the optimal
cost Jocc with output feedback is bigger than that with state feedback. Also, note that the
constraint on the second output group ¥; < 0.05 x I, is sufficient for the output covariance
constraints of Problem 1 in (4.3), that is, ¥; < 0.05 and Y3 < 0.05. As expected, the cost
of Problem 2 for both state and output feedback cases are bigger than those of Problem 1,

respectively.
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State Feedback Design

Iteration Constraints Optimal Cost
Number Spec. (Y:) | Actual (Y) Jocc Q: GT
0.0330 0.0314 0.0000 | 0.0237
9 0.0500 0.0123 0.0234 0.0000 | -0.9522
0.0500 0.0500 1.4268 | -0.0948
Output Feedback Design
Iteration Constraints Optimal Cost
Number | Spec. (¥;) | Actual (Y;) Jocc Q: GT
0.0350 0.0314 0.0000 | 0.0193
22 0.0500 0.0126 0.0340 0.0000 | -1.3839
0.0500 0.0500 2.3765 | -0.1374
Table 1: Solution to Problem 1 with a = 4.5.
State Feedback Design
Iteration Constraints Optimal Cost
Number | Spec. (¥:) | Actual (Y}) Jocc Qi GT
0.0300 0.0313 0.0000 . 0.0212
0.0123 0.0014 0.0019 0.0527 —0.9542
U] 0050 [0.0014 0.0499 ] 0.0235 [ 0.0527 14277 | | —0.0950
[ Output Feedback Design
Iteration Constraints Optimal Cost '
Number | Spec. (Y;) Actual (Y;) Jocc Qs GT
0.0350 0.0314 0.0000 0.0149
- 0.0126 0.0014 0.0035 0.0919 —1.3878
65 | 0050, [ 0.0014 0.0499 J 0.0341 [0.0919 2.3309 J ~0.1379

Table 2: Solution to Problem 2 with a = 30.

46




5 Conclusion

In this paper we have considered the so-called Output Covariance Constraint (OCC) control
problem. This is the problem of minimizing control effort subject to matrix inequality con-
straints on several closed loop covariance matrices. Optimality conditions for characterizing
a global solution are provided. In the state-feedback case, these conditions comprise one
algebraic Riccati equation, one Lyapunov equation, and a coupling condition. The unknown
in this system of equations is a matrix Q which may be interpreted as a matrix of Kuhn-
Tucker multipliers. We have given an iterative algorithm to find such a matrix Q. Under
the assumption that the optimality conditions admit a solution @, we have shown that the
iterative algorithm converges to one such solution, provided the step size parameter « is
properly chosen. Using the separation property of a closed loop covariance matrix given in
(12], we have shown how to modify the state-feedback algorithm to solve the OCC prob-
lem with output feedback. Both discrete and continuous time problems have been solved.
Finally, an example is presented to demonstrate the applicability of our results.
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ABSTRACT

An integrated means for active controller design and structure redesign is presented. The tech-
niques of covariance control are used to parametrize all possible combinations of active con-
trollers/structure redesign parameters which can stabilize the plant, and achieve certain closed-loop
performance.

1. INTRODUCTION

To cope with the demanding task of structural control problems, one can improve performance
by combining both the design of active controllers and the design of the structure. The term
”Smart Structures” implies the use of feedback control sensors and actuators imbedded in a material
structure to improve the dynamic response. Until now, the design of the controller parameters and
the structural material parameters have not been integrated and combined to guarantee any specific
performance. Existing methods can choose the controller and structure parameters by trial and
error or by gradient approaches to nonlinear programming problems.

These computationally intensive approaches are devoid of physical insight, do not guarantee
stability, and make no attempt to produce all stabilizing solutions. Such is the goal of this paper,
to show the explicit relationship between all stabilizing state feedback control gains and the struc-
tural parameters. If an initial structure is given, and if a controller which satisfies performance
requirements (closed-loop stability, tracking accuracy... etc.) is given, the necessary and sufficient
condition is known®7 for the existence of structure redesign parameters to duplicate the closed-
loop system performance while minimizing the active control effort. This condition derived from
the above setting is convex in the structural redesign parameters, and hence a global minimum is
guaranteed, as well as stability.

The drawback in this past approach®7 is that we are given a controller before hand, hence the
space in which we search for the optimum is necessarily restricted by this fact. In other words, it
is possible that beginning with another controller, we can reduce the control effort even more. We
seek to simultaneously redesign the structure and the controller. The above algorithm®7 does not
necessarily solve this problem, even if applied iteratively.

To obviate this difficulty we will use the covariance control technique®?:5, which provides a way
to parametrize all stabilizing controllers in terms of a physically meaningful state covariance X,
and the stabilizability conditions derived in the theory for active control forms a parametrization of
the set of all assignable covariances as function of structure parameters only (without the control




gains).

In this paper, we first present the problem formulation in section 2, and the main results are
introduced in section 3. We give 2 examples in section 4, and in section 5, a short discussion of
future directions is given. All proofs are given in appendices.

2. PROBLEM FORMULATION

We shall limit our attention to linear systems, although some advantages of our approach extend
also to nonlinear systems. Assume that the equations of motion for the linear elastic structure have
been put into the finite dimensional state form.

z=Az+ Bu+ Dw (1)

u=G,.x (2)

Where w(t) is a zero mean white noise (including actuator noise) with intensity W, and G, is the
state feedback control gain to be designed.

For a given state covariance X > 0, the necessary and sufficient condition for the existence of
a G, which assigns this X was derived by Yasuda and Skelton® as

(I-BBY)Q(U -BB*)=0 (3)
Q2 AX + XA* + DWD*

and the set of G, that satisfies the requirement is parametrized as:

G, = —%B+Q(21 - BBY)X™' + B¥*SBB* X~ 4 (I - BB*)Z 4)

Since w includes actuator noise, then D has the structure D = [B, D,], and stabilizability (con-
trollability) of (A,B) implies stabilizability (controllability) of (A,D). We assume controllability of
(A,B) to simplify the presentation. If (A,B) is controllable, then X > 0 is equivalent to (A + BG,)
stable. Hence, since (3) parametrizes all X > 0 that can be assigned to the system. Condition (3),
with X > 0, is also a necessary and sufficient condition for stability of the closed loop system.

The significance of state covariance is well known. A system must be stable to have a bounded
covariance, and almost all robustness properties of linear systems (disturbance rejection, struc-
tured and unstructured parameter robustness) can be related directly to properties of the state
covariance®?!,

Note that the control gain G in (4) is an explicit function of the covariance X and the plant
(structure) data (A,B). If we can relate a set of closed-loop performance requirements to an X > 0,
then all control gains that assign this X to the system are given by (4). Let A denote the original
structure, and G, denote the changes in the structural parameters that are allowed. Now if we
write A(system matrix) as
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A = AO + BpGpMp (5)

The structure of the connectivity matrices B,, M, allow changes in the system matrix to be
accomplished in a physically achievable way.

We call G, the “passive controller.” The closed-loop system matrix looks like so,

A = Ao + B,G,M, + BG, . (6)

The question is, given a desired state covariance X > 0, is there a (Gp, Ga) pair to assign this
X? This is equivalent to asking the stabilizability question, since every stable system has a finite
positive X > 0. If it is stabilizable, we desire the set of all (Gp, G,) which stabilize the system.

3. MAIN RESULT
Theorem 1 A state feedback system
= (A+ B,G M)z + Bu

u =G,z

is stabilizable by some Gy, G, iff there ezists X > 0 satisfying

PsPQPP; = 0
PMPQPPy =0 )
({ = PmpBBY)(PMmBBT)Y ] PUPQP =0

where

P & (I-BB%) Q& (XA;+ AoX + DWD")
5 & PB, MZEMXP
Py & (I-BB%), Pm2(I-MtM)

Proof. See Appendix A.

The conditions shown in (7) are similar to the covariance assignability conditions derived in®
for the measurement feedback system. This similarily is due to the fact that the plant redesign part
B,G, M, is mathematically equivalent to measurement feedback, and we take advantage of this fact
in our proof for Theorem 1. Next, compare (3) (interpret with Ao in lieu of A) with (5)-(7), we
can see that the set of assignable X is enlarged because of the added flexibility of plant redesign.
(Conditions (5)-(7) are less restrictive than (3). Any X which satisfies (3) will automatically satisfy
(5)-(7), but the reverse is not true.)

The next theorem gives the parametrization of active and passive covariance controllers.




Theorem 2 Suppose X is assignable. Then all (Gp, Ga) that assign X to the system are given by:

1 * - » *
G, = —§B+[Q + ByGpMpX + XM;G}B; + PF® — (P} )
—-Pre®PIP)X"' + B*(I - PfP,)S,(I - PfP,)* + P, Z, (8)
1
G, = —5,6+[PQP +L7®, - (LF®,) - LI®, LY L M*
+6%(I - L Ly)Sp(I = LY LYM™ + Z, — BH3Z, MM (9)

Where
® £ -P(Q + B,G,M, X + X M;GB]
a| I-pB* a| -I+p6*
L= {1—M+M } = [ 14 MM | FOF

and 3, P, Q, , M, are defined as in Theorem 1. §,, S, are arbitrary skew-symmetric matrices,
Za, Z, are arbitrary matrices of proper dimension.

Proof. See Appendix B.

Note that we have 4 free parameters, i.e., (Sq, Sp, Za, Z,) in the characterization of (Gp, Ga).
These free parameters provide us with additional freedom for further optimization of a secondary
objective (for example, searching for lowest fuel consumption or highest precision etc.), without
changing the closed-loop state covariance.

In the following examples, we will show that with the additional freedom of plant redesign, we
can achieve closed-loop performance which is not feasible with active control alone.

4. EXAMPLE

Example 1. Single Mass, Spring and Damper
The original system with active control only is

= Az + Bu+ Dw
u = G M,z

a= | % L] men[] 0-[3] w-]3]

From (3), we can derive the assignable set of covariances as

s
[
| — |
=
Wi O

];a>0.

where X, satisfies
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0=X,(A+ BG.,M,)T +(A+ BG,M,)X, + DDT .
| With simultaneous plant/control design
z=(A+ B,G,Mp)z + Byu + Duw
the set of assignable closed loop covariances is
X = [‘Bl fz] a1 >0, az > 0.
where X satisfies
0= X(A+ ByGyM, + B.GaM,)T + (A+ B,G,M, + B.G,M,)X + DDT .

It is obvious that the set of all assignable covariances by active control gain G, is included in
the set by the simultaneous plant/control design, i.e., the addition of plant redesign has enlarged
the set of assignable covariances, and consequently, the closed-loop performance capability.

Example 2. Euler Bernoulli Beam, 2 modes.

Consider
= (A+ B,GpyM,)x + Byu+ Dw

where

0 1 0 0 0
-1 —0.01 0 0 0.5878
A 0 0 0 1 Bo=D= 0
0 0 —16 —0.04 0.955
0100
T
My, = BP:[O 0 0 1}

The choice of M, B, corresponds to a damping mechanism to change the damping of each mode.

Given an assignable closed-loop covariance matrix:

0.1183 0 0.0013 -—-0.0296
0 0.1538 0.0296  0.047

0.0013 0.0296 0.0264 0

—0.0296 0.047 0 0.4484

X =
From Theorem 2, eq. (9), we compute

G, - —0.7236 0.4472} [0.2764 0.4472] z,

0.4472 -0.2764 0.4472 0.7236
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Substitute G, into G,, then, from (8),

G, = [-05 -04702 -1 —0.7608] + G425,Ga3
+Ga1ZyGas + Gas ZL Gar

Where 5, is arbitrary skew symmetric and Z, arbitrary.

Gaz = [0 0.4702 0 0.7608]

[0 0 0 0
G.. — | 02248 19775 -22228 0.8048
a3 = 0 0 0 0

| 0.3637 3.1998 —0.5967 1.3022
Gas = [-0.2351 —0.3804]
. - [ —0.0517 1.5453 0.5111 —0.1850
as = | —0.1737 -1.5278 1.7173 1.3782
Gas = [-0.0547 - 0.1816]
G - [ 0.2248 1.9775 —2.2228 0.8048
o7 = | 0.3637 3.1998 -3.5967 1.3022

Hence Gp(Zp) and Go(Zy, S,) form all possible combinations of active and passive controllers that
are stabilizing.

5. CONCLUSION

All controllers (passive and state feedback active) that assign a specified covariance are parametrized.
These parametrizations are expressed in terms of system matrices only. The next step will be to
expand the theory to measurement feedback system and systems with dynamic controllers, and to
apply the theory to specific smart structure problems.

6. APPENDIXES

Appendix A. Proof of Theorem 1.
For state feedback system (1)-(2) if X > 0 is assignable, we have

(I - BB*)(XA™+ AX + DWD*)(I - BBt) =0 (10)

Now let A = A, + B,GpM,.
From (10). =

(I = BB*)(X(Ao + ByGpM,)* + (Ao + ByGypM,)X + DWD*)(I — BB*) = 0 (11)

Let P2 (I- BB*) Q2 (XA:+ A.X + DWD").
From (11). =

P(XM;G:B; + B,G,M,X)P = —PQP

p—pTPp
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1
= PBG,M,XP=~2(PQP+S:) 5i=-S (12)

Let 3 £ PB,, M 2 M,XP.

1
= [GM = —§(PQP + Sk) (13)
For Gp M to have solution:
(I-BB*)PQP +5:)=0 (14)
For 3G, to have solution
(PQP + Si)(I-M*M) =0 (15)

It is easy to prove that (14), (15) are necessary and sufficient conditions for the existence of Gp.
Next, solve Sk, because Sy is skew-symmetric.
= 75k is Hermitian.

From (14) = (I - BB%)(j5%) = —j(I - BB¥)PQP (16)

From (15) = (jSk)(I - M*M) = —jPQP[I - Mt M| (17)

We need the following lemma:

Lemma 1 AX = C, XB = D has common Hermitian
Solution X is and only if these two equations have common solution and

. o . o_ | CA* CB
H_H’H_[D*A* D*B}

Now, if we set A= (I - 88%), B=(I - M*M)

C=—j(I-BB*)PQP, D =—JPQP[I - M*M]

then, from lemma 1, we can see that if 1S; has Hermitian solution

CA™=AC" = [I- ,3,6+]PQP[I - ,Bﬂ+] =0 (18)
D*B=B'D = [I- M*M]JPQP(I - M*M)=0 . (19)

Notice that '
an= (I- M+M)*(j5k)" =j(I - M"’M)PQP (20)

(I = BB*)(jSk) = —j(I - BBT)PQP
(16), (20) = { (I- M+/\/{)(;Sk) =]j(I— Mt M)PQP

We require (16), (20) to possess common solutions.
It is obvious that (16) always has solution:
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(1Sk) = =JPsPQP — (I - Ps)Z (21)
Substitute (21) into (20)

= —Pm(I— Pg)Z = ]Pm(f - Pg)PQP (22)
(22) is solvable iff
(1 ~ (PnBB*)(PmpBB* ) |Pn(I + P5)PQP = 0

= [~ (PnBB*)(PnfBB*)T|PoPQP = 0 (23)

Hence, we have proved that (14), (15) are equivalent to (18), (19), (23), i.e., for G, to be solvable
uf (18), (19), (23) hold.

Q.E.D.

Appendix B. Proof of Theorem 2
We need an extension of lemma 1.

Lemma 2 3

Suppose the equation AX = C, XB = D have a common Hermitian solution, the form of the
solution is '

= R AT - (AT 8 AT
(AT (AT (A LT (4] e

Where U is an arbitrary Hermitian matriz and [-]~ is the generalized inverse.
To generate all solutions, we must parameterize all pseudo inverse (-]~ as follows

[A]-[a] (2] [2]2] (2] e

where Z is arbitrary, [-]* denotes the Moore Penrose inverse.

Now, if we define

a| I-ppt Al —(-pBY)
L”"[I—MJFM} Q”“[—(I—M*’M)}PQP

then according to (24), (25),

Sk =LF®, +(LF®,)" ~ LI®,LL, + (I - L}L,)S8(Z - L} L) (26)
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S is an arbitrary skew-symmetric matriz. Nezt, plug (26) into standard form of solution for (13),
we get: '

1
Gy = —3BT(PQP+ L7, ~(L}®,) - L} ®,LL,|M*
+B7(I = Ly Lp)Sp(I - LYL)M™* + Z, - B, BZ,MM*

where Z, is arbitrary.

The parametrization of G, was derived in’.

Q.E.D.
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Abstract: The problem of finding the set of all stabilizing fuli-order controllers is equivalent to a problem of finding all matrices which
can be assigned to the closed-loop system as a state covariance. The necessary and sufficient conditions for a given matrix 1o be
assignable as a covariance are given. and all controllers (of plant order) which assign a specified covariance are parametrized explicitly.
The structure of covariance controllers is shown for the first time to be observer-based {state estimator plus estimated-state feedback).
The “central’ state estimator of the covariance controller is shown to be the Kalman filter. Unlike the traditional estimator-based
controller, the separation principle does not hold. but one can design a controller by assigning the estimation error covariance and the
plant state covariance simultaneously.

Keywords: Covariance control: all stabilizing controllers: observer: Lyapunov method: separation principle.

1. Introduction

In practical controller design problems. it is frequently required to impose performance specifications on
the variances of each output. Covariance control theory was originally motivated by such multiple design
objectives: the multiple inequality constraints can be satisfied by assigning a matrix (which carries the
specified variance value of each state on the diagonal) to the closed-loop system as the state covariance.
Along with the development of covariance control theory [4-9, 11-18] many additional advantages have
been investigated. Corless et al. [1] showed that the state covariance is explicitly related to such disturbance
robustness properties as the %, to &, gain of the system. and such stability robustness properties as an
upper bound on the stabilizing perturbations in the system matrix, etc. Yasuda et al. [17] showed that the
covariance controller is a parametrization of the set of all stabilizing fixed-order controllers. It has also been
shown [15] that covariance controllers are useful for designing reduced-order controllers.

In this paper, we consider the covariance assignment problem with full-order controllers (of order equal to
the plant) for linear time-invariant continuous-time plants. The necessary and sufficient conditions for
a matrix to be assignable as a state covariance are obtained and explicit controller formulas for all full-order
controllers which assign a specified covariance are given. These new results are obtained for the plant with
noisy measurements (most of the covariance control literature assumes noise-free measurements, see [9. 12]
for a few exceptions). Based on these results. the structure of covariance controllers is studied from the point
of view of estimation error covariance and plant state covariance assignments. Design of observers with
estimation error covariance assignment was discussed in [18] and connected in an ad hoc way to an
estimated-state feedback for controller design. Unlike [18], the present paper reveals an observer-based
structure in the covariance controller without any assumptions. We shall show that the separation principle
does not hold for covariance controllers, and that the state estimator and the estimated-state feedback gain
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cannot be designed independently. Nevertheless. the estimation error covariance and the plant state
covariance to be assigned can be specified subject to an inequality constraint on these two covariances. Such
controller design methods based on the covariance assignment are computationally tractable since an
assignable estimation error covariance can be obtained by solving the LQG-type Riccati €quation, and an
assignable plant state covariance can be found as a solution to a finite-dimensional convex feasibility
problem [4].

The paper is organized as follows. Section 2 describes the system models which we will consider and poses
the covariance control problem. Section 3 presents new assignability conditions for closed-loop state
covariance and explicit controller formulas. Section 4 introduces the concept of plant state covariance
assignment and studies the structure of covariance controllers. Conclusions are given in Section 5.

We will use the following notation. &[] denotes the expectation operator. For a matrix 4, 47 denotes the
transpose of 4. 4™ is the Moore-Penrose inverse of 4. For a nonnegative definite matrix 4, 4' 2 denotes the
unique nonnegative definite square root of 4. tr [A] is the trace of 4. rank [A]is the rank of 4. SVD stands
for the singular value decomposition.

2. The covariance control problem -

We consider the following linear time-invariant continuous-time system {Zp):
Xp = Apx, + Byu + D,w,, (2.hH
z=Myx,+ v, (2.2)

where w, € R™ and ve R" are zero mean white noise stochastic processes with intensities W, > Oand ¥ > 0,
respectively, and correlation Elwy (o ()] = Wy, o(t — 7). X, € R™ is the plant state, ue R™ is the control
input, and zeR"™ is the available measurement. Throughout the paper, we will assume that (Ap, D,) is
controllable, (4,, B,) is stabilizable, and (Ap, M) is detectable. Consider a full-order dynamic controller (. ):

X, = A.x. + B.z, (2.3)
u=C.x,+ D,z (2.4)

where x. € R" is the controller state. Combining (Z.) and (Z;), the closed-loop system (Z ;) can be described
by :
,\'C = ACIX + BCIW, (25)

where
Xp W, A, + B,D.M, B,C, _ | Dy B,D, 5
= s = ) el = ’ BC = . 2.6
x [.tc:, it [u:] Ay [ B.M, A, ! 0 B, (2.6)
[t can be shown that the closed-loop state covariance
X=&[x()x()T] = [;}c ‘f{‘t] (2.7)
satisfies the following Lyapunov equation
Q:= Ac|X+XAg]+BC|WBJl=0, (28)
where W is the noise intensity defined by
w, W
EwOw)T] = Wo(t — 1) = [ : ‘2] 5(t — 1), (29)
wh v

Definition 1. A positive-definite matrix X is said to be assignable as a closed-loop state covariance if it
satisfies (2.8) for some controller (Z.).
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Since (4,, D,) is controllable, it can easily be shown (see e.g. [7]) that (4., B,,) is also controllable for any
choice of (Z.) provided the controller is minimal, ie.. (4., B, C.)is controllable and observable. Therefore, by
Lyapunov theory, 4., is asymptotically stable (all its eigenvalues lie in the open left half plane of the complex
plane) iff X > 0. Thus, by assigning only positive-definite state covariances, closed-loop stability is guaranteed,
and conversely, the set of all stabilizing controllers is captured, since every stable system has a finite
covariance.

Throughout the paper, we assume that the plant state and the controller state are fully correlated, ie.,
Xpe has full rank. The assumption is not restrictive. since it is necessary to guarantee the ‘minimality’ of the
controller in the sense that there is no controller of smaller order which yields the same plant state
covariance, see [8] for more general and detailed treatment of this minimality concept. A technical
implication of the assumption here is that X s invertible since the controller order is equal to that of the
plant and X is a square invertible matrix. Indeed, it has been shown in [3] that if X, is not invertible, then
a controller state variable can be deleted without changing the closed-loop plant covariance.

Our objective is to design a controller which yields a specified matrix X > 0 as the closed-loop state
covariance. In order to accomplish this objective. we pose the following questions:

() What are the necessary and sufficient conditions for assignability?

(i) What are the controllers which assign a given assignable covariance”?

Answers to questions (i) and (ii) are given in the next section.

3. Assignability conditions and controller formulas

The following theorem yields necessary and sufficient conditions for a positive-definite matrix to be
assignable as the closed-loop state covariance and gives explicit formulas for all (full-order) controllers (Z.)
which assign a given state covariance X > 0.

Theorem 3.1. Let a positive-definite matrix X € R2"* 2% peo given. Then X is assignable as a closed-loop state
covariance iff it satisfies

(I — BB J(4, X, + X, AT + D, W,D})(I — B,B}) =0, (3.1

R=— A4, X, — X, A} — D,W,D] + (X,M] + D, W,,) V-UX,MT + D, W,,)T >0, (3.2)

rank(R) < n,, (3.3)
where

X,= Xo— Xpe XX (34)
If these conditions hold, all controllers which assign X are given by

Ac= XX '(4, + B,D.M, + L,V BIX )X, X7t — BM, X, X'+ X.X:'B,C., (3.5)

B.= XX (X, MI+D, W)V~ + B,D,— L,V 1], (3.6)

C.=%B;(Q, + B,D, VDIB} + B,D.I'T + LLDIB;)(2I — BB} )X T

+ B SB,BS X;.T + (I - B B,)Z, (3.7

D, = arbitrary, (3.8)
where Z is arbitrary and S is an arbitrary skew-symmetric matrix and

R=L,LT, L,eR"exn= (3.9)

Qo= A, X, + X, A5 + D, W,D], Foi=X,M] + D, W,,. (3.10)
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Proof. Computing each partitioned block of Q defined by (2.8), we have

Qi1:=0Q, + B,D.VD{B] + B,D.I'; + [,DIB} + B,C. X + X,.CIBI = 0. (3.11)
Qi2:=(Ap + ByD. M) Xy + X AT + (Ty + B,D.V)B! + B,C. X =0, (3.12)
Qrr=AX. + XAl + BM X, + XJMIBI + B.VB. =0, (3.13)

where Q, and I, are defined by (3.10).

Necessity: Suppose a given matrix X > O is assignable as a state covariance. Then there exists a controller
(A, B, C., D) satisfying (3.11)-(3.13). Pre- and post-multiplying (3.11) by (I — B, B, ) immediately yields
(3.1). Let

Po=[1 —-X, X '], Q= P.QPI. (3.14)
Using (3.11)—(3.13), (3.14) yields
Q= Qp + (B, D, — chXc‘l)f: + f‘,(B‘,Dc - X, X 'B)T

+(ByD. — X, X 'B)V(B, D~ X, X 'B.)' =0 (3.15)
where
Qp=A,X,+ X,AY + D,W,D], Fo=X,MI +D,W,,. (3.16)
Completing the square, (3.15) is equivalent to
Q, -V 'F;T+L,L]=0, (3.17)
where
Ly=(ByD.— X, X 'B.+ [, V-YHyviz (3.18)

Since L,L] >0 and rank (L, L]) < n, (3.17) shows that the conditions (3.2) and (3.3) are necessary.

Sufficiency: Suppose the assignability conditions (3.1)~(3.3) are satisfied for a matrix X > 0. Sufficiency
will be shown by constructing all controller matrices satisfying (3.11)~(3.13).

Lemma 3.1 (Skelton and Ikeda [11]). Let matrices A, B, X and Q be given where X is invertible and Q = QT.
Then there exists a matrix G such that

BGX + (BGX)"+ Q =0, (3.19)
iff

(I-BB*)Q(I-BB*)=0 (3.20)
holds, in which case, all such matrices G are given by

G=-4B*QQRI-BB*)X '+ B*SBB*X "' +(I-B*B)Z, (3.21)

where Z is arbitrary and S is an arbitrary skew-symmetric matrix.

Applying Lemma 3.1 to equation (3.11), the existence of C, satisfying Q,, = 0 is guaranteed (for any choice
of D.) by (3.1) and invertibility of X, and all such matrices C. are given by
C.=%B;(Q,+B,D.VDIBl + B,D.I'T + I',DIBI)(2] — BB, ) X."
+ B SB,B, X;."+(I — By B,)Z, (3.22)
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where Z is arbitrary and S is an arbitrary skew-symmetric matrix. Now, instead of solving (3.12) and (3.13),
we consider the following equivalent equation:

I ’chXc_l:I[QIZJ
=0. 2
P 323

The first row block of (3.23) gives

(Ap+ ByD M, — X X 'B M) X o + ByCoXo— Xp XV AX, + L,v'*BI =0 (3.24)
Solving for A, we have

Ac= X X' (4, + B,D.M, + LV ?BIX D)X, X! - BM X, X'+ X . X,.'B,C.. {3.25)

Finally, we need to show the existence of B. and D satisfying the second row block of (3.23), or Q;, = 0. with
A. and C. given by (3.25) and (3.22), respectively. Recall that. if any solution B, exists. then it must satisfy
(3.18) for some L, where L, satisfies (3.17). Solving (3.18) for B..

Bo= X Xp'(FV™' '+ B,D. — L, V~'2) (3.26)

Now we claim that, given any matrix D., the controller matrices A, B; and C. given by (3.25), (3.26) and
(3.22) satisfy Q,, = 0. This can be verified as follows. Substituting 4. and B, into (3.13), then using (3.11) to
eliminate C., we have

Qu2= — X X MQ, — [V ' 7T+ LoLy)X"X. =0, (3.27)
where the last equality holds due to (3.17). O

Theorem 3.1 provides an easy way to check if a specified matrix X > 0 is assignable as a state covariance.
However, a desirable state covariance (determined by design specifications) is not assignable in most cases.
Hence, we need a method to construct an assignable covariance. The following corollary gives an alternative
characterization of the set of all assignable state covariances, which is useful for constructing an assignable
covariance. Hereafter. we will assume that there is no correlation between the process noise w, and the
measurement noise ¢, i.e.. Wy, = 0 for simplicity.

Corollary 3.1. Let X, and X, be any matrices satisfying

(I - BB )(A4, X, + X,A; + D,W,DI)(I — B,B;)=0, (3.28)
A Xy + X A7 — X, MTVIM, X, + D, W,DT + L,LT =0, (3.29)
0<X,<X, {3.30)
Jor some L,eR"™ "= Then the set of all assignable covariances can be generated by _
X, NTT
= 3
X [TNT TTT] (3:31)

where T is any nonsingular matrix and

N=(X,- X,)t> (3.32)
Proof. Noting that (3.2) and (3.3) hold iff R = L,LT for some L,eR"exn we see that any assignable
covariance X must satisfy (3.28) and (3.29) for some L,. It is necessary that X, >0 since X >0, and

Xo— X, =X, X! X >0since X, > 0 and X is a square invertible matrix. This proves the necessity of
(3.28)~(3.30). Sufficiency can easily be verified by noting that NT"= X . and TTT = X,. O

63




T. Iwasaki. R.E. Skelton Observer-based structure of covariance controllers

The above results are useful for construction of assignable state covariances since (3.28) and (3.29) are
uncoupled in terms of X, and X, and hence X, and X, can be obtained by solving the linear equation (3.28)
for X, >0 and the standard Riccati equation (3.29) for X, > 0. However, we must still check if X,> X, as
in (3.30).

When constructing an assignable state covariance as in (3.31) for given X, and X, satisfying (3.28)—(3.30).
we have a freedom in choosing a nonsingular matrix 7. However. this freedom does not affect the closed-loop
performance since the matrix T contributes only to the similarity transformation on the controtler coordi-
nate. Thus. the matrices X, and X, are the only factors that determine the closed-loop performance
embedded in the state covariance X. In view of the controller formula (3.5)-(3.8), the other freedoms for the
closed-loop performance are the direct measurement feed through gain D, and the arbitrary matrix Z and the
arbitrary skew-symmetric matrix S. The freedom Z disappears if there is no redundant actuators, l.e..
Bg B, > 0, since in this case ] — B B, = 0. The skew-symmetric freedom S can be utilized for minimization
of the input energy by the similar method to that of [13].

4. The structure of covariance controllers

In this section, the structure of covariance controllers is studied. It will be shown that the full-order strictly
proper covariance controller can be interpreted as an observer-based controller, i.e., a state estimator plus an
estimated-state feedback. To this end, we restrict our attention to strictly proper controllers and hence to
a special choice of the arbitrary D, in Theorem 3.1 (D, = 0).

As has been shown in Corollary 3.1, the controller state covariance X . and the correlation X, are
controller-coordinate-dependent. Moreover, in general, the description of output performance specifications.
such as the variances of each output, does not require the whole closed-loop state covariance X but only the
plant state covariance X ,. Hence, assigning a matrix X » as the plant state covariance makes more sense than
the closed-loop state covariance. This motivates the plant state covariance assignment problem, defined as
follows.

Definition 2. A positive-definite matrix X, e R" *"» is said to be assignable as a plant state covariance if there
exists a controller which yields & [x,(1)x,(t)T] = X,.

As in the case of the closed-loop state covariance assignment problem, the solution to the plant state
covariance assignment problem consists of (1) necessary and sufficient conditions for a matrix X p to be
assignable as a plant state covariance, and (2) an explicit formula for all controllers which assign a specified
plant covariance. The following theorem gives not only the solution but also a transparent description of the
covariance controller structure.

Theorem 4.1. Let a positive-definite matrix X ,eR™" be given. Then X, is assignable as a plant stare
covariance iff it satisfies

(I — ByBS ) (A, X, + X, A} + D,W,DI)(I — B,B}) =0, (4.1

X,>P, (4.2)
where P is the unique positive-definite solution to the following standard Riccati equation:

ApP + PA; — PMIV™'*M,P + D,W,DI =0, (4.3)
in which case, all strictly proper full-order controllers which assign X p are given by

Ac=A,—BM,+ B,C.+ L, V'?BIX !, (4.4)

B.=XMIVv-t— L y-12 (4.5)

Co=—4B; (4, X, + X, Al + D,W,DT)(2] — B,B})X. ' + B} SB,B} X' + (I — B} B,)Z, (4.6)
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where Z is arbitrary and S is an arbitrary skew-symmetric matrix and L,eR"™ " is any matrix such that
X.=X,~X,>0, (4.7)
where X, is the unique positive-definite solution X,>00f
A Xy + X AT = X, MIV=IM, X, + D,W,DI + L, LT =0, (4.8)

where the controller coordinate has been chosen (T = N in(3.31),(3.32)) so that the resulting closed-loop state
covariance is given by

_[X X
X= [X X] | (49)

Proof. Suppose X, > 0 is assignable as a plant state covariance. Then from Corollary 3.1, X, must satisfy
(3.28) and (3.30) for some X » > 0 which solves the Riccati equation (3.29). From the standard monotonicity
property of the solution to the Riccati equation (see e.g. [10]), the stabilizing solution X p Satisfies

0O<P<X, (4.10)

for any choice of L, where P is the stabilizing solution for the case L, = 0. This proves the necessity. To
prove sufficiency, suppose X p > O satisfies (4.1) and (4.2). Then there exists a matrix X p > 0 satisfying (3.29)
and (3.30) for some (small enough) L ,, which can be verified by a choice L, = 0. Hence, we can construct an
assignable closed-loop state covariance X as in (3.31) and compute the controller matrices using (3.5)—(3.8),
where we choose D, = 0 since only the strictly proper controller is of interest here. This proves the sufficiency.
Finally, the controller formula (4.4)-(4.6) can be obtained by choosing the controller-coordinate transforma-
tion matrix T in (3.31) to be N, defined by (3.32). O

Note that the set of all assignable plant state covariances is convex as the intersection of the linear affine set
defined by (4.1) and the convex cone defined by (4.2). Thus, the controller design based on the plant state
covariance assignment is computationally tractable (see [4]).

To interpret Theorem 4.1 in terms of the concept of observer-based controllers, we refer to the following
results on the state estimation with error covariance assignment [18] and the covariance control with state
feedback [5, 11].

Theorem 4.2 (Yaz and Skelton [18]). Given a linear time-invariant continuous-time plant (X,), consider the
Jollowing state estimator (Z,.):
£y = Ap%y + Byu + F(z — M, 2)), (4.11)

where the estimator gain F is the only design parameter. There exists a state estimator (Zse) which assigns
a given matrix E > 0 as the estimation error covariance, i.e.,

E=&8[(x, - 2,)(x, — %,)7], (4.12)
iff E satisfies the Riccati equation
A,,E+EA,‘,'—EM;,rV‘lM,,E+Dp W,Dy+ L,LT =0 (4.13)

JSor some L, e R™*"= in which case, all estimator gains which yield (4.12) are given by
F=EMJV-'— L V12 . 419)
Theorem 4.3 (Hotz and Skelton [5] and Skelton and Ikeda [11]). Consider a linear time-invariant continuous-

time plant (Z,). A positive-definite matrix X p > 0 is assignable as a state covariance via state feedback control
law u = Gx, iff X, satisfies

(I = BB )(4, X, + X, Ay + D,W,DI)(I — B,B;) =0, (4.15)
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and the set of all state feedback gains G which assign X, is given by
G= - %B;(XPA; + A, X, + D, WPD‘T,)(2I - B‘,B;)X,,‘1 + B, SB;,B,,+ X‘,_l + (I - B; B,)Z, (4.16)

where Z is arbitrary and S is an arbitrary skew-symmetric matrix.

In view of Theorems 4.2 and 4.3, observer-based feedback structure of the full-order covariance controller
described by Theorem 4.1 is evident by comparing (4.5) with (4.14) and {4.6) with (4.16). We will discuss the
structure for the state estimator part and the estimated-state feedback part separately.

First consider the state estimator part. Note that the set of all B, (with freedom L;) given by (4.5) and (4.8)
is exactly the same as the set of all admissible estimator gains F given by (4.14) and (4.13) where an estimator
gain F is said to be ‘admissible’ if it yields a finite error covariance. Comparing (4.8) with (4.13), we can attach
a physical significance to X p (Which has been defined as the Schur complement of X in (3.4)) as the estimation
error covariance. In fact, using (4.7) and (4.9),

ELlxp = x)xp — x)7T] = Elxox3] — [x,xT] - Elxex]] + &[x.xT]

=X, ~-X.-X.+X.=X,.
Also note that, from (4.4), (2.3), and (2.4)
Xe = ApXc + Byu + B(z — Myx,) + L, V' 2BTX i, 4.17)

which has an extra term due to L, (the last term) when compared with (4.11). If we call the estimator part of
the covariance controller obtained by choosing L, = 0 the ‘central estimator’, it is apparent that the central
estimator is the Kalman filter. Since P > 0 given by (4.3) satisfies P < X, for any choice of L, the Kalman
filter optimizes not only the scalar objective tr(X,) as in the standard LQG theory but also the matrix-
valued, or multiobjective function X p (in the sense P < X, over all L;). On the other hand, nonzero choices
of the free matrix L, can improve some other performances. For instance, it has been shown [2] that the
central 5, estimator has the following structure:

X. = Apx. + Byu + B(z - Myx:) + DoWoorsts (4.18)

where W, can be thought of loosely as an estimate for the worst-case disturbance in the sense of the K.
norm. This illustrates the importance of an extra term as in (4.17). However, how to choose L, to accomplish
various objectives remains an open issue. :

For the estimated-state feedback part of the covariance controller, we see that the feedback gain C, given
by (4.6) is identical to G in (4.16) if we replace X, by X p- This difference can be interpreted as the
compensation for the estimation error due to noisy measurements by subtracting the error covariance X »
from X, to obtain X.. Also note that the set of all assignable plant state covariances with full-order
controllers is a subset of that with state feedback with the additional constraint P < X,. This fact makes
sense physically since the estimation error covariance P is zero if all the states are available without noise
(P is the ‘smallest’ achievable estimation error covariance).

Finally, we see that the separation principle does not hold for the covariance controller, i.e., the state
estimator and the estimated-state feedback gain cannot be designed separately since the determination of the
estimator parameters 4, and B, involves closed-loop information X ,, and the computation of the estimated-
state feedback gain C, requires the estimator information X »- Nevertheless, the plant state covariance X p tO
be assigned can be specified without any knowledge of the estimator since the characterizations of X » given
by (4.1) and (4.2) involve only the unique solution P to (4.3). In other words, for any choice of assignable X,
(by (4.1), (4.2)), there always exists a full-order controller to assign X, to the closed-loop system.
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5. Conclusion

carries desirable closed-loop properties.

Observer-based feedback structure of the full-order covariance controllers is interpreted in comparison
with the previous results (with a state estimator with error covariance assignment and the state feedback
covariance controller). It has been shown that the separation principle for the covariance controller does not
hold, ie., the state estimator cannot be designed independently of the estimated-state feedback gain.
However, simultaneous assignment of the estimation error covariance and the plant state covariance can
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Minimal energy covariance control

R. E. SKELTON*. JI-HAN XU+t and KAZUNORI YASUDA+

In general, the covariance controller which assigns a specified state zovariance
X to the system is not unique, and the whole set of such controllers can be
parametrized by a skew-symmetric matrix S of appropriate dimension. This
paper describes how to minimize the control energy by using this freedom and
reveals some properties of closed-loop system poles with respect to S.

1. Introduction

The main idea of the covariance control theory developed by Hotz and
Skelton (1987) and Skelton and Ikeda (1989) is to choose a state covariance X
according to different requirements on the system performance and robustness
and then to design a controller so that the specified state covariance is assigned
to the closed-loop system. For example. a performance requirement might be
constraints on the output variances:

Yi = [CXC*y <o, i=1....n,

where [-]; stands for the ith diagonal element of the matrix. Stability robustness
might require constraints on the maximum singular value of X and Y (Corless er
al. 1989). The computational errors in analogue controllers (from amplifier
noise) can be minimized by placing constraints on the controller state covariance
X.:

[Xc]ii=svi= 1,.... ne
where X is the (2, 2) block of
’:XE Xoc
ch Xc

and s is a constant scaling factor (Hwang 1977, Liu, 1991).

In general, the controller which assigns the given X to the system is not
unique. and the whole set of such assigning controllers can be parametrized by a
skew-symmetric matrix § = —S* of appropriate dimension. Also, the system
properties cannot be decided solely by the state covariance X. This paper
describes how to use these free parameters to minimize the control energy and
reveals some properties of the closed-loop system poles with respect to S.

The paper is outlined as follows. A brief review of the covariance assignment
problem based on the result by Yasuda and Skelton (1990) is given in §2. In
§3. the free parameter §= —S* for parametrizing the set of covariance
controllers is used to minimize the mean squared control. Some properties of

X
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the closed-loop system poles with respect to the free parameter S, which can
help to choose a specific S when considering also the location of the closed-loop
system poles. are described in § 4. To illustrate the theory we give an example in
§5. Finally the paper is concluded with § 6 where the further research in this
direction is discussed.

2. Parametrization of covariance controllers
Consider the following linear system of order n,:
Xp = Apxp + Byu + Dyw } 2.1
= Mpyx,
where x, € R™ is the state. u € R™ the input, w € R™ the plant disturbance.

and : € R": the measurement. This system is driven by a linear controller of
order n.:

Xe

Acx. + B.z } 22

= Cx. + D,z
By defining the matrices
aldp 0 B, 0 a|l M, O
vely o) ool o) we[T ) |
(2.3)
sl D C al Dp Al *%p
G=[Bc AcJ’~ D=[O , X = x,

where [, denotes an n, X n. identity matrix, the closed-loop system can be
written in the following form:

%= (A + BGM)x + Dw (2.4)

The state D covariance X of the system (2.4) (D for deterministic) (Yasuda and
Skelton 1990) is defined by

N
|

n>

r x
X4 Zfox(i, Hx*(i, H)det, r = ny + n. + ny
i=1

= Xp  Xpe

ch Xc
where x(i, t) denotes the state response of the system (2.4) when only the ith
excitation is applied (from the total of n, + n. + n, excitations: xp (0), Xe,(0).
w(t)=w,(t), a=1, ..., n, B=1, ..., n,, vy=1, .... n,). It is known

(Yasuda and Skelton 1990) that X is the unique solution of the Lyapunov
equation

(A + BGM)X + X(A + BGM)* + DyD¥ = (2.5)
if the closed-loop system A + BGM is stable, where
DyD§ & DWD* + X, X, = diag[...x3(0)...x2(0)..]
W=diag[...w2...]

14
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Hence, the D covariance assignment problem is to find G such that (2.5) is
satisfied for a specified X >0. In this case. the stability of the closed-loop
system is assured if (A + BGM. Dy) is controllable, which is always true
because Dy is a non-singular matrix. The existence conditions for a controller of
order n. which will assign X to the closed-loop system are given as follows
(Yasuda and Skelton 1990).

Theorem 2.1 (Yasuda and Skelton 1990): A specified X >0 can be assigned to
the svstem by G if and only if

(1 - ByB;)Qy(I = B,B;) =0 (2.6)
(I = M MO, (I = MyM,) =0 (2.7
(I = LL*)Y(I - M*M)X~'QBB* =0 (2.8)

are satisfied, where the superscript plus (+) denotes the Moore-Penrose inverse
and

Qo £ X,A¥ + A, X, + DD
Op £ X, (X,A5 + A, X, + DDy + Xpe X' Xoo X X3 X
X, £ X, - XpX7'X2 (>0)
L2 -M"M)X"'BB*
Q & XA* + AX + DyD}
8 £ [DHD%]

For the characterization of all controllers which can assign X to the system
we have the following theorem (Yasuda and Skelton 1990).

(2.9)

Theorem 2.2 (Yasuda and Skelton 1990): Suppose that X is assignable; then all
controllers which assign X as a state covariance to the system (2.4) are given as
follows:

G =G, + G,5Gy+ Z - B"BZMM* (2.10)

where S is a skew-symmetric matrix and Z an arbitrary matrix of appropriate
dimension respectively, and

Gi & —1B*Q(2I — BB*)X'M* + 1B*(¥* - W)BB*X"'M* (2.11)
G, 2 B*(I - L*L) (2.12)
Gy 2( - L*L)BB*X"'M* (2.13)

with
WEALY(I - M*M)XT'Q + [I — L*(I - M*M)X|QL*L

Remark 2.1: By using the singular value decomposition of L given by
L =|Yun UnjjA O] Vh 3‘1:'
Un Un [0 OjLVh V3
- Ve
V2= [sz]

and defining
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the dimension of the skew-symmetric matrix in (2.10) can be reduced. which
means an elimination of the redundant ‘free parameters’. In this case we have

G =G, + G:SGy; + Z — B*BZMM™ (2.14)

where G, and Z are defined as before:
G-, = BV} (2.15)
G; = V,BB* X~ 'M* (2.16)

and $ is any skew-symmetric matrix of appropriate dimension which is obviously
less than that of § in (2.10).

We shall assume that B, has full column rank and M, full row rank. In this
case.

B*BZMM™* - Z =0 (2.17)
and the set of all covariance controllers assigning X to the system is para-
metrized by § = ~S§*. This freedom will be used in the following sections for
improving some other system performances. O

3. Minimization of control energy
The cost function

v = Zf w*(i. 1)Ru(i, 1)dt (3.1)
=170

is often used as a measure for control energy in design. By using the relation

u=Cx. + DMy,

(3.2)
= [DM, C] B(:]
the function (3.1) can be rewritten in the following way:
v =tr(UR) (3.3)

where
U= zfu(i. Du*(i. 1) dr
i=170

= [D.M, CJX[DM, CJ*

X X MED¥
=[DM, C]| L& ; °]
oo, ez 3 ][

with X being the state D covariance of the system. Hence,
v =tr(D-M,X,M;DIR + D-M,X,.C¥R + C. X . MJD!R + C.X.C¥R)
(3.4)

It is obvious that for the given M, and R the value of v depends not only on the
D covariance X but also on D, and C. which in turn are the functions of S for
the given X as explained in § 2. In the rest of this section we shall describe how
to minimize v with respect to S that is, among all the controllers which assign a
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specified X to the system. we shall determine that which consumes the least
energy.

A basis for all skew-symmetric matrices S = —§* € R™*" can be chosen as
follows:
0. ... o ... 0
: llk j =1 n
- _ ) T - . e e oy 5 : -
Sjk - 0 lk/ 0 O ) for {k= 1...”’15 bu[k#:] («-3)

0 ... 0 ...70
where 1, means that the (j. k) entry of the matrix is 1. Since the number of
different Sy is m = 3ng(ng — 1), we can rename the set {Sik} as {S;} with i =1,
-+, m. With this basis, the set of all skew-symmetric matrices can be
parametrized with {a;, i = 1. ..., m} as follows:

S=a 5+ + a,S, (3.6)
Correspondingly. the covariance controller has the following form:
D, C. _ i -
G = = Gl + GzSG_’, = Gl + E(X"G:S,’G} (..‘7)
B. A i=1
By blocking the matrices G, and G,S;G5 in the same way as that of blocking &
~| Do Co : —| D Ci 1
Gl - [BCO Ac()] ' GZS‘G3 h [Bci Aci (3 8)
we have
C.=Cy+ 2 aCy, D.= Dg+ >aD, (2.9)
i=1 i=1

Substituting C, and D, in (3.4) with those in (3.9), we have

m
tr(DeMyp X, M3DIR) = tr (DM, X, M$D%R) + 23 a;tr (DM, X, M3D, R)
i=1

m m
+ z Za,a’/ tr(Dc,MpoM;‘Dg‘,R)

i=1j=1

=c¢, + 2aTh; + aTQ,a (3.10)
where
a‘T=[a1,...,ar,,,] (3.11)
¢, = tr(DyM,X,M5;D%R) € R™! (3.12)
[tr(DyM, X, M D%R)
by = : e R™x! (3.13)
_tr(DCOMpoM;‘Dme)
[tr(DaM, X, MD5R) ... tr(De M, X, M}D%,R)
Q= : :
Lt (Dem Mo X, MEDGR) ... tr (Do My X, M¥D%,R)
= Qf e R™*m (3.:4)
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tr(Dcpr«chC:R) = tr(Dd)MpocchR) + Za’,' tl’(DC.)AWPXpCC?,R)
=1

+ > atr(DgMX o CHR) + X Y aajtr (D My X . C5R)
=1 i=1j=1

= ¢ = a*bhs + a*Qha (3.135)
where
cy = tr{ Doy M, Xp CHR) (3.16)
1 (Do M, X CHR) + tr (DM X, CHR) J
by = : (3.17)
Ltr(Dyy Mp X CEnR) + tr(Depy Mp X CHR)
Ctr (D M X, CER) ... tr(Dy My X, CiiR)
0, = : : (3.18)
LT (Do MpXpcCER). 0 t1(Dep My X CEnR)
tr(C. X3 MEDER) = ¢3 + a*by + a*Qs«x (3.19)
where
ci=c¢y by=by, Q3= 0% (3.20)
m
tr(C. X .CiR) = tr(CoX.CHR) + 22&,- tr(CoX.CER)
i=1
+ ZZQ’,&/ tr(CC,XCC:’R)
i=1j=1
=cy + 2(1’*b4 + CY*Q_;a’ (321)
where
cy = tr(CoX.CHR)
f—tr(CcoXcC;"lR)
b4 =
tr(CoX.C¥,.R)
'r_[r(CchC::klR) e [r(CchcC::ka)
Q.= : :
| H(CnXCHR) oo 0 (ConX CluR)
Hence. we have
v = ;}jﬂ u*(i, t)Ru(i, t)dt (3.22)
=c + 2a*h + a*Q«
where
c=citcr+ ey + ey
b = by + b2 + 3bs + by (3.23)

0=01+ 0.+ 0s+ Q4
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Since v =0 is quadratic in a we have Q = O* = 0. Further we can draw the
following conclusion.
Theorem 3.1:  For a specified state covariance X, the cost function

r .x

S ) ut(i. DRu(i, 0 dr

i=1

Al

=c¢ + 2ab + a*Qa

where c. b and Q are previously defined by (3.23). has a global minimum wi:h
respect 1o «. if and only if (I — QQ*)b =0. and the minimum can be achieved
by any « satisfving

Qa+b =0 (3.24)

Proof: The proof follows from 3&v/da=2b+(Q + Q0% a, 3*/f3at =
Q + Q*=0. and the existence condition for a solution to the linear algebra
problem (3.24) (Strang 1988). O

4. Some properties of the poles of covariance control systems

As described in §2. the set of controllers which assign a specified state
covariance X to the system can be parametrized by § = —S*. and hence the
location of closed-loop system poles is also dependent only on S for the given
X. Some properties of the closed-loop poles resulting from this dependence will
be studied in the remainder of this section.

Theorem 4.1:  Suppose that a specified state covariance X can be assigned to the
system. Among all controllers that assign X, the sum of the closed loop poles is
constant.

For the proof of Theorem 4.1 we need the following lemma.

Lemmad.2: For any skew-symmetric matrix S = —S* and anv symmetric matrix
X = X*. we have
tr(SX) =0 4.1)
Proof:
tr (SX) = tr (XS)
tr(SX) = tr[(SX)*] = —tr (XS)
that is

tr(XS) = —tr(XS) =0 O
By using Lemma 4.2 we can prove Theorem 4.1 in the following way.

Proof of Theorem 4.1:
n.+n, no+n,

MA + BGM) = S A(A + BG,M + BG-SG; M)
=1

i=1
tr(A + BG\M + BG>SG: M)
tr(A + BG,M) + tr (BG-SG:M)

{

it
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From (2.5). (2.14) and (2.17), we have
[A + B(G, + G:SGy)M)X + X[A + B(G, + GySGy)MJ* -~ DD =0

(4.2)
Since this is true for all § = —S5*, we can set S = 0 and obtain
(A+ BGIM)X + X(A + BGIM)* + DyDE =0 (4.3)
By subtracting (4.3) from (4.2), we have
(BG1SGsMY)X + X(BG,SG;M)* =0 (4.4)
which means that
BG,SG;MX = § (4.5)

where S is a skew-symmetric matrix. Equation (4.5) can also be written as
follows:

BG-SG:M = §x! (4.6)
Now by using Lemma 2, we obtain
tr(BG,SGsM) = tr(§X 1) =0 (4.7)
and hence ‘
nx+nc
> A(A + BGM) = tr(A + BG\M)
i=1
which is independent of §. This completes the proof. a

Remark 4.1:  Since the system [A + B(G; + G,SG3)M, Dy] is always controll-
able and X is chosen to be positive definite, the closed-loop system
A + B(G, + G2SG3)M retains its stability for any skew-symmetric matrix S.
Theorem 4.1 tells us in addition that the real part of every closed-loop pole is
bounded by some number which is independent of S.

In the following we study another property of the closed-loop system poles
for the case where dim(S) = 2[dim (S) < rank B < number of control inputs]. In
this case § can be parametrized by a single parameter « in the following way:

S =as, Va (4.8)

e o)
and the characteristic polynomial of the system is then
A(s) & 'sI = (A + BG\M + aBG-5,G3M)|
isI = (A + BGM)||I — a(s] = A = BG\M)"'BG,5.G5M|
In general. we almost always have (Davison and Wang 1973)
AlA + BG M) # A(A + BG\M + aBG,5:G3M), Vi. j. ¢ #0

if (A + BG, M, B) is controllable. This condition is satisfied because we assume

where

He>

(4.9)

75




Minimal energy covariance control

that (A, B) is controllable. Hence. we have
r[A(s)] = rn{ll = a(s] = A — BG,M)"'BG.5.G3M!], Va # 0 (4.10)

where r,(+) denotes the ith root of a polynomial. Again by exploiting a well
known result in the theory of multivariable root loci (Kouvaritakis and Shaked
1976). we obtain

lim {r{A(s)]} = z[(s] = A = BG,M)"'BG15,G3M] (4.11)

with z;(-) denoting the ith transmission zero of a system which can be either
finite or infinite. Since the system in (4.11) is strictly proper, we can draw the
following conclusion by considering Theorem 4.1.

Corollary 4.3:  For the case where dim(S) =2, there is at least a pair of poles
of the covariance conirol system tending to infinity in the direction parallel to +jw
axis and —jw axis respectively as « tends to infinity .

Remark 4.2: Theorem 4.1 and Corollary 4.3 describe an interesting property of
covariance control system poles. This property can be used to study the root loci
of covariance control systems, for example to locate the system poles in a
certain region in the complex place. This property will be shown in Example
5.1. a

5. Example
To illustrate the theory presented in previous sections, we give an example
here.

Example 5.1: By solving the problem of assigning

8 -5 0 0
-5 5 0 0
— 10-4
Xo =100 45 5 45 s
0 0 -5 75
to the plant (a lightly damped flexible beam with two modes (Hsieh 1990)),
0 1 0 0 '
-0-1 -0-01 0 0
4=l 9 0 0 1
0 0 -0-01 -0-005
0 o
2 1 * -3 —
By=|y o DeWDs=1071, X5=0
3 5

via state feedback, we have from (2.11)-(2.13)
G, = —1B, 0,21 - B,B})X;' + B;5B,B; X"

Using the singular value decomposition of B, given by

A
B, = [Uy sz][ob:J Vy
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we obtain
G, = =1B; Qp(2l = B,B;) X' + BJ Uy SUS X'
By minimizing the cost function

v =tr(UR) = tr (G, X,GR)
1 2
R=ls 3]
0 1
Sopt = a’opt[_l 0]

where g, = 1-8847 X 107, and the corresponding minimal cost value

where R is chosen as

we obtain the optimal S:

Vi = 3-4258 X 10-3 for § = aop,[_(l) (1)]

which is smaller than either

b =35133 x 107 for § = 0[_? (l):l

or

1 O

If our purpose is not to minimize the control energy but to assure that all the
poles of the covariance control system be located within the sector of + 45° in
the complex plane, we can find from the root loci in Fig. 5.1 the critical
a; =835 x 107 such that o < a, guarantees that the damping ratio of the
covariance control system is larger than 0-707. The root loci of the system with
respect to § = a$, are given in Fig. 5.1.

b = 61567 x 102 fors=sz=[_° 1:]

Root Loci wrt S

. 0 alpha=0
Al + alpha=aipha_opt

|
I
i
A

x : alpha=alpha ¢

iy

o DUUO WU 'Y

-5 4.5 -3 35 3 2.5 -2 -1 s -1 0.5

Figure 5.1.  Root focus for constant covariance.

77




Minimal energy covariance conrrol

To study the time response of the covariance control system. three different
S (8§ = agpS2. a.S: and §,) are chosen, and the impulse responses of the
corresponding closed-loop systems are shown in Fig. 5.2. It can be seen from
Fig. 5.2 that these three different systems have very similar impulse responses
v(r). This is because these systems have the same output covariance matrix Y
(recall from the theory that S does not influence Y or X). Notice. however. the
influence of S on the control variable from Fig. 3.2.

Remark 5.1: Some poles of the covariance control system with S = S, are too
large to be shown in the properly scaled Fig. 5.1. and hence the poles for this
case have not been plotted here. To conserve space. only y(1) and u(l) are
plotted to represent the output v(r) and control variable u(r).

6. Conclusion

It is well known (Skelton and Ikeda 1989, Yasuda and Skelton 1990) that all
controllers which assign a specified state covariance X to the system can be
parametrized by a free skew-svymmetric matrix S. In this paper. this freedom is

01 :mpuke Response for alpha=1 Kke--il 01 mpulse Response for alpha=1 88e-4!
0.08+ y ok i
~ 006} i 4 i
= I 1
0.04} | i
0.02+ <’ 02r 1
0 ; -0.3 |
0 5 10 0 S 10
t [sec] t [sec)
0.1 Impulse Response for alpha=8.35c~4‘ 01 Impulse Response for alpha=8 35:-{
| i :
0.08F “! ok ;
~ 006F \ | %
= i T 0Olh <
> 004k . 3 J| i
002+ 4 0.3¢ -
| |
1
0 d -0.3
0 5 10 5 10
t {sec) t {sec)
0.1 Impulse Response for aipha=1.0 200 - Impulse Response for alpha=1 0
) 200, }
.08 H - 100 4
~ 0.06F \ E ‘
— ] —
= \ 3 0 ‘
004F 1\ < ‘ 1
0.02} AN «1 1004/ J{
0 - . -200
0 5 10 0 b 10
t (sec} 1 [sec]

Figure 5.2, The impulse responses of the closed-looped systems corresponding to Fig. L.
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used to minimize the control energy; that is. among all the controllers which
assign a given X to the system we have derived the controller which uses the
least energy.

Some properties of closed-loop system poles with respect to S are also
revealed. In classical root locus theory (for excess poles over zero of 2 or more),
it is known that, as the open loop gain goes to infinity, the sum of the
closed-loop poles is a constant (but stability is not guaranteed). A modern-day
counterpart of this "pole conservation’ principle is presented by showing that. as
the controller is changed over the entire set of controllers that preserve the same
positive state covariance matrix. the sum of the closed-loop poles is a constant
(and stability is guaranteed).

REFERENCES

Coriess, M.. Znu. G., and SkeLtox. R. E., 1989, Robustness of covariance controllers.
Proceedings of the 28th IEEE Conference on Decision Control, Tampa. Florida (New
York: IEEE). pp. 2667-2672.

Davison, E. J.. and Wang, S.-H.. 1973, Properties of linear time-invariant multivariable
systems subject to arbitrary output and state feedback. [EEE Transactions on
Automatic Control, 18, 24-32.

Hotz., A., and Skerton, R. E., 1987. Covariance control theory. International Journal of
Control. 46. 13-32.

Hsien, C., 1990. Coatrol of second order information for linear systems. Ph.D. Dissertation,
Purdue University, West Lafavette. Indiana.

Hwang, S.. 1977. Minimum uncorrelated unit noise in state-space digital filtering. /EEE
Transacrions on Acoustics, Speech and Signal Processing, 25. 273-281.

Kouvaritakis. B., and Suakep, U.. 1976. Asymptotic behavior of root-loci of linear
multivariable systems. International Journal of Control, 23, 297-340.

Liu, K., 1991. Adaptive QMC-OVC controller design of large flexible structures with finite
wordlength considerations, Ph.D. thesis. Purdue University. West Lafayette. Indiana.

SkeLton, R. E.. and Ikepa, M., 1989. Covariance controllers for linear continuous time
systems. [nternational Journal of Control. 49, 1773-1785.

StrRANG, G.. 1988. Linear Algebra and lts Applications (New York: Academic Press).

Yasupa, K.. and SkerTon, R. E., 1990. Covariance controllers: a new parameterization of the
class of all stabilizing controllers. Proceedings of the American Control Conference,
San Diego. California.

79




G. Parametrization of All Linear Compensators
for Discrete-time Stochastic Parameter
Systems




&

Automanca. Voi. ). No 6, pp 45-0S5. 994
Copynight @ 1994 Eisevier Science Ltd
Printed in Great Bntain. All nights reserved
000S-1098/94 $7 00 + 0.00

Parametrization of All Linear Compensators for
Discrete-time Stochastic Parameter Systems*
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A characterization of all assignable state covariances and a parametrization
of all linear stabilizing output feedback controllers that achieve this
assignment are given for discrete-time stochastic parameter systems.

Key Words—Stochastic control; stability robustness; discrete-time systems: feedback control.

Abstract—For discrete-time stochastic parameter systems,
this paper presents a characterization of all state covariances
assignable by a linear controller and a parametrization of all
controllers that achieves a desired covariance. These results
indirectly provide the parametrization of all linear fixed-
order compensators which are mean square stabilizing for
this class of systems. The paper also includes robustification
of the derived compensators and an example to illustrate the
results.

INTRODUCTION

THis paPER considers the static and dynamic
output feedback control of discrete-time stoch-
astic parameter systems. Such systems are also
called state (control) dependent or multiplicative
noise models or systems with white parameters.
The interest in such models stems from several
application areas such as satellite attitude control
(McLane, 1971: Sagirow, 1972), vibration study
of structures and mechanical systems (Bolatin,
1984; Ibrahim. 1985), chemical reactor control
(Wagenaar and DeKoning, 1989), macro-
economics (Aoki. 1976), population dynamics
(Bartlett, 1960: Tsokos and Padgett, 1974;
Mohler and Kolodziej, 1980), random amplitude
modulation in filtering (Nahi, 1969; Rajasekaran
et al., 1971; Tugnait, 1981), random roundoff
errors in digital control (Liu and Kaneko, 1969;
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Rink and Chong, 1979a, b; VanWingerden and
DeKoning, 1984). analysis of circuits (Willsky
and Marcus, 1976; Michel and Miller, 1977), and
recently in robustness studies and robustifying
existing controllers (Willems and Willems, 1983;
Yaz and Yildizbayrak, 1985; Bernstein and
Haddad, 1987b; Yaz, 1988a, 1989b, 1992).

We will confine our treatment to discrete-time
system models. Such models. for example, may
be the result of random sampling of continuous-
time processes where the randomness may be
caused by the choice of a human operator in the
control loop, a mere absence of data, or it may
be carried out to observe the underlving
inter-sample behavior (DeKoning, 1988). Digital
control using a computer with finite word length
(Liu and Kaneko, 1969; Rink and Chong,
1979a, b; VanWingerden and DeKoning, 1984)
is another reason for the appearance of
discrete-time  stochastic parameter models.
When continuous-time systems given by an Ito
differential equation with state- and control-
multiplied Wiener noise effect are uniformly
sampled, such models arise again. More
recently, random parameters are introduced into
the problem formulation to achieve an extra
degree of stability-robustness in controller and
estimator designs (Willems and Willems, 1983;
Yaz and Yildizbayrak, 1985; Bernstein. 1987a, b;
Yaz, 1988a, 1988b, 1992) which again necessit-
ates the consideration of discrete-time stochastic
parameter models.

Motivated by the application possibilities
enumerated above and also by the elegance of
the mathematics involved, many researchers
contributed to this field. We will simply give a
few references and refer the reader to the
excellent survey papers (Malyshev and Pakshin,
1990a, b). The dynamic output feedback control
of discrete-time stochastic parameter systems has
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been considered in Pakshin (1978). Bernstein
and Haddad (1987b). Yaz (1988b). Phillis
(1990), DeKoning (1992). Pakshin (1978) is on
the necessary conditions for the mean square
optimality of a strictly proper full-order (has the
same dimension as the state) linear compensator
for such systems. Bernstein and Haddad (1987b)
obtain necessary optimality conditions for both
static and fixed-order dynamic output feedback
controllers. Yaz (1988b) derives sufficient condi-
tions for the mean-square stabilization (the
results are also true for almost sure stabilization)
by strictly proper full-order compensators. Phillis
(1990) operates in the framework of Pakshin
(1978) but extends the results to minimax control
for systems with unknown noise covariances.
DeKoning (1992) introduces the concept of
mean-square compensatability which is the
ability to mean-square stabilize such a system by
a linear strictly proper time-invariant compen-
sator of full-order. Necessary and sufficient
conditions for the compensatability as well as the
computation of optimal compensators are
presented.

In the present work. we will be interested in
static and fixed-order dynamic output feedback
covariance assignment for discrete-time stochas-
tic parameter systems. First, necessary and
sufficient conditions for the assignability by a
static output feedback of a given covariance (the
steady state second moment of the system state)
will be derived. Next. all controllers that will
achieve this assignment will be parametrized.
The assignability conditions will be interpreted
in light of existing system theoretic concepts for
this class of systems. Then, this design is
robustified to allow parameter variations in the
operation and a robust controller which main-
tains mean-square and almost-sure boundedness
of the system state is given. All of these results
are then generalized 1o the case of fixed-order
dynamic compensation. An example is given to
illustrate the use of the proposed techniques.
This paper is a much improved version of its
predecessor (Skelton er al., 1991) in several
ways: first, the present model additionally
includes control-dependent noise in the state
equation and state-dependent noise and additive
noise in the measurement equation in a unified
framework, where the multiplicative noises are
correlated (this helps in realistic modeling of
several physical phenomena). Second, a different
and more direct approach is used in deriving the
results with interpretations of assignability
conditions using well-known system theoretic
concepts. Third, the robustness study is more
general in that it encompasses both deterministic
and stochastic model uncertainties.

MODEL AND PRELIMINARIES

Consider the discrete-time stochastic para-
meter system

Xier = Alw)x + Bi(wue + v (w), (1)

where xi e R". u, € R™ and A%, B, and U, are
all composed of white noise (time-wise inde-
pendent) elements. A} and B; are uncorrelated
with v, which has a zero mean (denoted by
U, = E{v,} =0) and a constant covariance of z,.
weQ where (Q, X, ?) is a fixed probability
space. The measurement equation is

e = Ci(w)xi + w(w), (2)

where y, € R”, p=<n and the matrix of white
noise elements Ci is uncorrelated with the
additive noise vectors v, and w, with zero mean
and covariance Z,, >0, but we allow correlation
of Ay, B, and Ci. For simplicity, let w, be
uncorrelated with all other noises, let all
multiplicative noises be weakly stationary and all
noises be independent of the initial state x,.
Note that the above representation includes
deterministic parameter systems (by simply
setting the covariances of multiplicative noises to
zero) and the usual, more structured parameter

representation with A,(w)=A,+ ¥ ai(w)A4},
i=1t

etc, although the input matrix Bi(w) in our
model will be restricted later to obtain stronger
results.

We include a few system theoretical notions
for the above class of systems to facilitate the
discussion. The system (1) or the pair (A}, B3) is
called mean square (m.s.) stabilizable if there
exists a constant state feedback controller such
that this controller renders the state of system

(1) m.s. bounded (sup E{||x, |’} <) for all Z,.
k=0

A simple test for m.s. stabilizability is given in
DeKoning (1982). It turns out that a m.s.
stabilizing control is almost surely (a.s.), or with
probability one, stabilizing for this class of

systems (Yaz, 1988a) (sup |lx.|| <> with prob-
k=0

ability one). The (Aj, C%) pair for the model
X1 = Ai(w)xi, yo=Ci(w)xi is called m.s.
observable if E{||y.]|*} =0 for all k=0 implies
xo=0. The definition is shown in DeKoning
(1982) to result in the following test for m.s.
observability. Define o : R"*"— R"*" by

A(X) 2 E{A°* XA} (3)

Note that the subscript k is dropped due to the
weak stationarity of the noise elements. The
necessary and sufficient condition for the m.s.
observability is that the observability Grammian
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satisfies
i .szf"(C’rC’) >0, ¢= [a(n+1)/2]) -1, 4)
k=0

where &% =a(x*""Yy  and AX)=X.
Obviously for a Q >0, (A}, Q'?) is always m.s.
observable for any A3,

The following results will also be useful in the
sequel.

Lemma 1 (DeKoning, 1982). Consider the
stochastic algebraic Lyapunov equation:

X=dA(X)+Z, 3,=3T=0,

where o is given by (3).

(1) If & is a stable transformation [which is
equivalent to the m.s. boundedness of the
state of unforced system (1)], then there
exists an X =0 which is the unique real
symmetric solution.

(i) If there exists a solution X =0, and
(A% ZV%) is m.s. observable, then «f is a
stable transformation and X > 0.

Lemma 2. The stability of the transformation <
given by (3) is equivalent to that of «*:
R™*"— R™*" given by

A*(X) = E{A*XA"T).
Proof. The proof simply follows from the

necessary and sufficient condition for the m.s.
stability of & (Kalman, 1961):

p(H)=pA* ®A%) <],

where the first one is the operator's spectral
radius, and the second one is the spectral radius
of the matrix which is the expected value of the
Kronecker square of the Aj matrix. If the
properties (A ® B)" = A" ® BT, p(A) = p(4T7),
E{AT(w)} =[E{A(w)}]" are used in the above
condition, we obtain
p(H)=p(A*)<1,

completing the proof.

STATIC OUTPUT FEEDBACK

(i) Assignability and covariance assignment

Let us now assume that Bi(w)= b(w)B’
where b,(w) is a scalar white noise sequence,
and try to assign the state covariance (second

moment) X £ lim E{x,x]} by the control
k——x
U = Ky,. &)
The closed-loop system is
x-;(.,_l = (Ai + bk BJKC;()XZ, + Uy + kawak (6)
82

and if the control is mean square stabilizing, the
steady state covariance of the state vector
satisfies

X =(A°"+bB’KC)X(A* + bBKC' )T
+Z, + b"B*KZ KB, (7
Independence of the noises is utilized in the
simplification resulting in (7). Upon rearranging,
(7) yields
X-AXxa' -3,
= B°KbC* XA*' + bA*XC ' KTB*’
+ B*K[b*C°XC" + b5, |K"B*". (8)

Completing the square on the right side. we will
obtain

X - AXA" -3,
= (B*K+ G(X))[b*C°XC” + b5,
x (B°K + G(X))T
~ G CXCT+B5,]GT(X), (9)

where

G(X) 2 bA*XCT(b°C'XC” +B25,)~". (10)
Rearranging once more yields
X —AXA" -3, +bAXCT

X (b*C°XC" +b°S, )" bC XA

=(B°K+ G(X))TT"(B*K + G(X))". (11)
At this point, X must be chosen such that it
renders the left side of (11) non-negative definite
with rank not exceeding p, which is required by

the form of the right side of (11). In that case,
we have

LL" =(B*K + GX)NTTT(B°K+G(X)T (12

with the obvious definition of the new variables
LeR™?, T eRP*" with det[T]#0. Hence, for
an orthogonal matrix U € R**7, it is true that

LU =(B°K + G(X))T (13)
or
BK=LUT "= G(X) (14)

which can be solved for X (Collins and Skelton,
1987) as

K=B(LUT™'-G(X))+(I,- B"B")Z, (15)

where B*' denotes the unique Moore-Penrose
pseudo-inverse, for any arbitrary Z if and only if

BB [LUT™' - G(X)]=LUT ' - G(X) (16)
or

(I-BB")LU = (I - B°B*)G(X)T,
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which is equivalent to
({-BB")X -A°XA" -5,)(I~ B°B) =0
(17)

using (10) and (12). The matrix U can also be
found by (Collins and Skelton, 1987)

U =¥, block diag [1,, U)¥7, (18)

where the singular value decompositions (I —
B*B”)L = W, block diag [A, 0)¥], (I - B*B*)
G(X)T = W, block diag [A, 0]¥T are used with
U e RP~m*(P=%) being row-orthonormal. and
A €RP* contains all the nonzero singular
values. Summing up, we have

Theorem 1. A given state covariance X is
assignable to system (1) by some control (5) if
and only if it makes the left side of (11)
non-negative definite with rank not exceeding 4
and it satisfies the consistency condition (17). If
X is assignable, all controllers assigning X are
given by (15), (18).

Note that if the covariance assignment is
successful and (A%, ?) is m.s. observable. then
by Theorem 4.5 of DeKoning (1982), ([A%+
beB'KC3, [ZV?, (5% B*KZY?)) is m.s. observ-
able, and Lemma 1, combined with the resuits of
Yaz (1988a) guarantees a.s. boundedness of the
system state.

(ii) On the existence of solutions to assignability
conditions

Now let us interpret the assignability condi-
tions starting with

X -AXA" -3, + bA’XC”
X (b°C°XC*" +b°%,,)"'bCXA” =0. (19)

It is easy to see that this inequality can be
rearranged to give

Xz[A -bC'GT(X)]"X[AT ~bCTGT (X))
+bG(X)Z,GT(X)+Z, 2 d(X), (20)
where G(X) is given by (10). It is shown in
Yaz (1989a) that the existence of X satisfying
(20) is equivalent to the m.s. stabilizabil-
ity of (A3, b5,C) for a m.s. observable
pair (A7, £1?).
Now, considering equation (17), we can write
(I - B°B*")
X[X —(A°+bB°K)X(A® + bB°K)T - Z,]
X(I-BB")=0, (21)
by using the properties of the Moore-Penrose
pseudo inverse:

(I-BB")B° =0, B'(I-BB")=0 (22)

for an arbitrary K. So. according to Lemma 1. if
(A3, b« B*) pair is m.s. stabilizable (i.e. there
exists a K such that (A} +b,B8°K) leads to a
stable transformation. then there exists a
solution X =0 to the equation

X =(A+bB°K)X(A* +bBK) +5,, (23)

which implies (21). We have actually used the
property presented in Lemma 2 that the
transformations & and «* have the same
stability properties. Therefore, one can see that
the m.s. stabilizability of (4%, b, B*) is sufficient
for the existence of a solution to the consistency
equation (17).

The above discussion is included to relate the
assignability conditions individually to well-
known system theoretic concepts. Obviously, for
assignability, the same covariance must satisfy all
the assignability conditions simultaneously which
means that the system theoretic conditions
associated with individual assignability condi-
tions as a whole are neither necessary nor
sufficient for the assignability of a specific
covariance.

(iii) Robust design

It is possible to robustify this controller so as
to accommodate erroneous modeling of para-
meter statistics or parameter perturbations by
making the closed-loop system a prescribed
degree of m.s. stable via modifying the design
equations. Let us change equation (7) to

Xy = o(A° +bB°K,C)X,(A° + bB°K,C°)T
+a’b"BK I KIB + 3, (24)

with « > 1 which will modify the non-negativity
condition as

X = a*[A°XA* - bAXC
X (*°C°XC*" +b%2,)"'bC XA + =,
£ ®(a, X,) (25)
and the consistency condition (18) changes to
(I - B°B*)[X, - @A X, A" -5, ]
X (I-B°B")=0, (26)
which if holds yields the control gain:
K,=B"[LUT;'- G(X)]+(,— BB Z,
(27

with U being found similarly as in (18) and
L,LI=X, - d(a, X,),
T.TI=b0’C'X,C°' +b’%,,
Since in inequality (25). «'s can completely be

absorbed into the Ajs, the system theoretic
properties sufficient to lead to (25) will change to
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the m.s. stabilizability of (raAi', b«C%) and the
m.s. observability of (a4}, =1?), which will be
shown to be equivalent to the m.s. observability
of (A4, Z?). Since the new observability
Grammian satisfies

S a*a(,)
k=0
= (22, a[d(E)]?, . . ., a (L)
577
T
x| AHEENT Ha g er o)
o[ (2]

the m.s. observability of (adj, £I?) is equiv-
alent to the full rank property of &,. But

rank (§,)
=rank ([Z}%, [2(Z,)]", ..., [2(Z)]"]
x diag ([, al, . . ., &*I])
= rank (§), (30)

with §=&, for a=1, therefore m.s. observ-
ability of (43, ?) and (@A}, Z1?), a>1 are
equivalent.
Equation (26) will also lead to
(I - B*B*)
X [X, — a*(A* + bB°K,)X,(A* + bB°K,) - 2]
x(I-BB")=0 (31)

similar to the development when a =1, so using
Lemma 1 again, the existence of an X, >0 is
implied by the m.s. stabilizability of (aA%, b, B*)
pair.

If, for example, Z, >0 or (A}, =.?) is m.s.
observable (please see the comment below
Theorem 1) and the assignability conditions are
satisfied for some X, >0, then by Lemma 1, the
operator &5 :R"*"— R"*" defined by

AU(X,) = a*(A° + bB°K,C°)X,(A° + bB*K,C*)"
(32)

is a stable one or the spectrum of the operator
a~2d5(-) is inside a disc of radius a7?<1,
which will be called a m.s. stability margin of
1 - a~2 If the covariance controller K, based on
the equation (24) is used in system (1), the
actual second moment satisfies

X =(A° +bB°K,C)X(A° + bB*K,C)T
+b2B°K, 2 KB +%,. (33)

Let us now see how this actual covariance is
related to the design value X,. Defining
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X,2 X, - X, we have from equations (24) and
(33):
X, =(A°+bB°K,C)X, (A’ + bB°K,C*)T
+(a* = DA’ + bBK,CHX,(A° + bB'K,C)T
+b B K, 2 KIB]. (34)

Since K, is m.s. stabilizing with a stability
margin 1—a7% it is m.s. stabilizing. Also
a*® > 1. Therefore, the right-most term above is
non-negative definite. Hence, it follows from
Lemma 1 that there exists a solution X, =0 to
(34). which gives X =X, or the true assigned
covariance can be made to satisfy upper bounds
included in X,.

Theorem 2. Suppose that (A3, ='?) is m.s.
observable. Then the control gain (27)-(28) will
result in a m.s. stability margin 1 - a~2 as
expressed by equation (32) and will satisfy the
second moment upper bound X = X, if and only
if (25) holds with X, — ®(a, X,) having rank not

exceeding p for some a > 1 and (26) is true.

Now let us see how this extra degree of
stability helps in the presence of parameter
perturbations. Suppose that true parameters
statistics are not known for A%, b, and C} and
we estimate the second moment operators

WAL by bICU)CY, and byAy(-)Ci. This
obviously encompasses deterministic as well as
stochastic model uncertainties. We did not
include any robustness results related to
erroneous modeling of additive noise effects
because such errors will not result in the
destabilization of the system. In the choice of the
design values for the parameter statistics. it is of
utmost importance to make a selection in such a
way as to enhance the satisfaction of the
assignability conditions. Suppose that we would
like to obtain a stable closed-loop system
operator &5 for some B>1. This means that
under the proper assignability conditions. there
exists a unique positive definite solution X, to

X, = BHAY + b, B Ky Co) Xy (A% + by B K;Co)T
+ BIBKy2. KEB' + 2, (35)

which forms the basis of our robust control
design. We shall use a Martingale (stochastic
Lyapunov) type analysis to determine how much
deviation from the true model statistics is
possible without causing instability.

By using Lemma 2 for equation (35). we can
see that there exists a positive definite solution
to

Xi= BZ(Af, +b,B'Ky CZ,)TX,*;(A'Z, +b,B°KgCy)
+ B*BiB*KyZ, KB +3,, (36)
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where we will assume for simPlicity that X, >0,
Define the function v, =x{ Xjxi, which will
serve as an auxiliary Lyapunov function. Define
the difference

u%’kéE{Vka.[/xSk,Xi--l,..‘}—Vk (37)
which from (6) gives
%= 5 [(AT+ A)TX5(A5 + A — X3+ p,
(38)

where A%, Af, and p are defined by
Ap=Au + bdkBsKﬁ Co (39)
k=Ap— Al + byB’K;Ci — buB’KyCiyy  (40)

p=v'Xju+bw KB X;B Kyw>0. (41)
Since for any a >0, it is true that
ASXIA +ATXGAS
= aAG XGAG+ aT ATX AT (42)

letting & = % ~ 1, and substituting from (36). we
have
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G A

.
% Sxi[

- BbIB°KsS KB — Zv]xi +p. (43)

For m.s. and a.s. boundedness of the perturbed
system state, it is sufficient that the expression in
the square brackets be negative definite (Yaz,
1988a). That gives us the following result:

Theorem 3. Suppose that the assignability
conditions of Theorem 2 (with « replaced by B)
are met, and that a controller based on
robustified design equation (35) is given. A
sufficient condition to maintain the m.s. and a.s.
boundedness of the system state for the
deterministic and stochastic parameter perturba-
tions defined above is that the total perturbation
term defined by (40) satisfies the second moment
bound

ATXGA < (B - 1)BIBK,2, KB
B -1
,B:
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-+

z,. (44)

() Assignability and covariance assignment
In this case, we put a further restriction on the
input matrix by making it time-invariant,
*=B°. Let us use an r-dimensional linear
time-invariant dynamic compensator

Xi+] =ACX2 + chk

45
U, = CCX2+DCyk ( )

that results in the closed-loop system

X = ALCx, + BELE,, (46)
where
X = [r}] € R’H'r, AE[_ - [Ai + B-"DCCZ BSCC]
X% BC;, A€

(47)

I, B’Dc v

B¢t = [ " ] C, = [ k:l.
0 B I Tl

The second moment of the composite state is
defined by

. xS s Cr XI XSC
X2 lim £ {L{]["f 8 ]} - [(X")T X‘] (48)
which satisfies

X=A‘EX(AZZ)’ + BC"V(BC")r (49)

if the controlled system is m.s. stabilized by the
compensator (45), where

AE @

Expanding (49), we obtain

X =(A+BKC)X(A + BKC)T
+ (I, + BKI,,) V(I,, + BKI,,)T (31)

with
(A o] _[3’ 0] _[D‘ CC]
A*_[o o) 8= 0 L) K= B° A°
(52)

C: 0 I, 0 0 ¢
=l ob w=G 0) w[p 8]
““lo 1 W={g o) % 00
Upon  rearrangement  and
(12V1,, =0), we obtain

simplification

X'_AXA —IHVIH-——BKCXA +AXC KTBT
+BK(CXCT + 1, VIL)KTBT. (53)
Completing the square on the right side gives
X_AXA —IHVI”
— el Zald T T
=[BK + G(X))(CXCT + 1, VI5)[BK + G(X)]
~G(X)(CXCT+1, VID)GT(X) (54)
with
G(X)=AXC7(CXC’ +1L,VID)™. (55)

The positive definiteness of the expression in the
parentheses in (53) will guarantee the existence
of the inverse. This expression is

cxc'+z, CX«

Vol 7ald T _
CXC +112v112_[ e xe

]. (56)
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Note that our positive definite choice of X,

X.Y XSC
(XrC)T X¢
implies that X >0 and X° — X™(X°)~(X*)" >
0 (Horn and Johnson, 1985). Hence the positive
definiteness of (56) is guaranteed if X° >0 and
CX'C =CX*(X) (X*)'C ' +%,>0. But
2. >0 is sufficient to make (56) positive definite,
due to the fact that

CXC -CX(X) (X)) C +3,,
= CXC + C[X° = X*(X)(X<)TIC” +3.,
(58)
with C3 £ C — C°. Therefore, the inverse in (56)
will exist if, e.g. X >0 is chosen and Z,, > 0.

Rearranging equation (54) and substituting
from (55) gives

X -AXAT-1,VI,,
+AXCT(CXCT + I,,VIT,)"'CXAT
=[BK + G(X))(CXCT + I,,VIT,
x [BK +G(X)]™. (59)

X=[ ]>0 57)

We require that the second moment X is chosen
such that the left side of (59) is non-negative
definite and of rank not exceeding p + r, because
the right side has these properties. Under these
conditions, (59) is rewritten as

LLT =[BK + G(X)]TT"[BK + G(X)]T (60)

with the obvious definitions of L € R(**+7x(p+n
and TeR¥»*"**) S0 for an orthogonal
U e RP*NXP+1 e have

LU =[BK + G(X)]T. (61)

It is shown above that TTT >0, so det[T]#0
and

BK = LUT™ ' - G(X).
The solution for K exists if and only if
BB'[LUT™'-G(X)]=LUT'-G(X) (62)
in which case, all solutions are given by
K=B'[LUT'-G(X)]+(,.,— B'B)Z (63)

for an arbitrary Z € R"™*7*(?*") The necessary
U matrix can be found from (61) as

U =¥, block diag [£,,, UV, (64)

where the matrices above are found from the
singular value decompositions (I — BB")L(I —
BB")L = W,, block diag [A,, 0}¥[,, (I - BB")G
(X)T = W, block diag [A,, 0]V, with %, being
row-orthonormal, and A, e RP**?¢ contains all
the nonzero singular values. Condition (62) can
also be simplified in a manner similar to the

d?
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static output feedback case to yield
(I-BB)X-AXAT - 1, VI,){ - BB")=0.
(63)

Let us summarize the previous development:

Theorem 4. A given steady state second moment
X e RU7*0*D with X = X7 >0 is assignable
by an r-dimensional dynamic compensator (43)
to system (1) and (2) with B, =B*and =, >0 if
and only if X makes the right side of (59)
non-negative definite with rank not exceeding
p+r and it satisfies equation (65). All
compensators assigning X are given by (63) and
(64).

(it) More on the dynamic assignabilirty conditions
Let us now expand on the assignability
conditions starting with

X =AXAT - AXCT(CXC’
+ 1,VID)'CXAT + 1, VI,,. (66)
Upon substitution from (48), (50), and (52)

and after a few manipulations involving the
inverse of partitioned matrices, (66) yields

Lo xe]=0 67)

where
Y=X'-AXA - AWA -3,
+(AXCT+ AWC)
x [CX°C + CWE +3,]7
X (A°X°C + AWC")T (68)
and
W =X° — X°(X)~'(X*)T (69)

is the Schur complement of X°. Since X >0 is
chosen, both X° and W will be positive definite.
Therefore, in order to satisfy (67), we only need
to have (Horn and Johnson, 1985):

Y - X(X)'(X) =0 (70)

which simplifies to the Riccati matrix inequality
in W with a cross-weighting term

Wz AWA - (AWC + A Xx°C)
x (C*WC +3,+CX°C)™!
X (AWC +A°X°CH +3, + A XA, (T)
First, note that
043, +A4 XA -aXxC
x[CXC'+2,]7'CxA" (T2

is non-negative definite, since this property of Q
for Z, >0 is equivalent to the same property of
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the partitioned matrix (Horn and Johnson,
1985):

[zv +AX°A
CXA°

ASXICST
. +CxXC

which is obviously true since (73) can be written

as
[f)" zow] * E{[é:]/\”[fi’r@"]} =0. (74)

So, rewriting (71) as
W=F[W-WC'(CWC +R)'C'WFT + Q
(75)

]zo (73)

with

F=A-AX'C'R'CXA,
R=3,+CxC.

Note that the situation in (66) is quite different
from that of (19) in the static output feedback
case, since now the parameters F and Q are
dependent on the covariance X'=W +
X(X)7I(X*)T whose existence is sought.
Therefore, we cannot use reachability and
detectability properties to secure the existence of
a solution to the non-negativity condition.

Now considering condition (65) and upon
substitution, we see that it reduces to

[(1 - B*B*)(X° - A°X°A* - Z,)(I - B°B*) 0]
0 0

“lo of

so that it can be given the same interpretation as
in the static output feedback case, i.e. it is
implied by the m.s. stabilizability property of
(A%, B°) pair.

(76)

(iii) Robust design
To robustify this dynamic compensator, we
start with a modification of equation (51):

X, =a*(A+BK,C)X,(A+ BK,C)"
+ (L + BK. o)V (1, + BK, ;)T (78)

for an X,=X]>0 that gives rise to the
non-negativity condition:

Z, - *AX,AT - o?, VI,
+ a’AX,CT(CX,CT + I, VIL) 'CX,AT =0
(79)

with the same rank condition. The consistency
condition becomes

(1 - BBf)(Xa - QZAXD,AT_ CYZ[“VIH)
X (I-BB"=0. (80)

Suppose that these assignability conditions are
satisfied, then the control gain becomes

Ko =B'[L UT:' - G(X,)]+[l,.,— B'B|Z
(81)

with L,L[ being equal to the left side of
inequality (79) and

TGT:= a’z[C4Y3C +1]2V1r2 (82)

the orthogonal matrix U being found as in (64).
Again, denoting the difference between the

design and actually assigned covariances by

Xy=X, — X, we find from (51) and (78) that

X,=(A+BK,C)X,(A+ BK,C)T
+(a* - [(A + BK,C)X, (A + BK,C)T
+ (L + BK, 1)V (1, + BK,112)T). (83)

Since a®> 1, the right-most term is non-negative
definite and since K, stabilizes the system with
an extra degree of m.s. stability, the closed loop
system operator is a stable one. Therefore. by
Lemma 1, there exists a solution X, =0 to (83)
which implies that an upper bound X, = X on
the assigned covariance can be achieved.

Theorem 5. The necessary and sufficient condi-
tions for the assignability of X, >0 to (78) are
that (79) and (80) hold and that the left side of
(79) should not exceed (p +r) in rank. In this
case, the control specified by (81)-(82) will
assign a second moment bound on the
closed-loop covariance (51) that satisfies equa-
tion (78) and the closed-loop system will have
m.s. stability margin of 1—a~? and the a.s.
boundedness of the closed-loop system will be
guaranteed if (A, + BK,Cy, (I, + BK,1,,)V'?)
is m.s. observable.

The last statement of the above theorem
follows from Lemma | and the discussion on

robust design for static output feedback
controllers.
Let us now use this robust design to

accommodate erroneous or unmodeled para-
meter statistics. Assume again that the available
model has the operators A,(-)AL, C,(-)A], and
C4(-)CJ instead of the true moments of A, and
Cy in (52). Therefore, we base our design on

Xﬂ = IBZ(A(] + BKﬂC‘/)Xﬁ(Ad + BKﬂCd)r
+ B2(I, + BKgl )V (1), + BKyl))T  (84)
assuming that the modified assignability condi-
tions for Xy = X[ >0 are met. Again, we see
that the use of Lemma 2 allows the existence of
a positive definite X3 satisfying
X; = ﬁz(Ad + BKﬁCd)TX;(Ad + BKﬁCd)
+ B2l + BKgl )V (I, + BKyl)".  (85)
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A similar analysis to the static output case yields,
L =xI(AG+ A)VTXF(AG+ A°) = X3 ]x, + 1
(86)

with A%, A%, u defined by

Agk = Adk + BKE Cdk (87)
A2=Ak‘Adk+BKp(Ck—Cdk) (88)

w=ET(+ BKgl,) X 5(1, + BKgl,5) > 0.
(89)

Again using the fact
A XA+ AT XA

< (B~ DAGX3AG+ (B - )7'ATX A% (90)
and substituting from (85), %, < —x]Mx, + u for
an M >0 if
ATXAC

<(B*-1)(I), + BKgl)V (I, + BKgl;)™.  (91)
The right side of inequality (91) can be made
positive definite if 2, >0, Z,>0 and B¢ is full

row rank with the dimension of the controller
satisfying r = p. This can be seen easily from

det (I, + BKgl,2)V (I, + BKgl,2)T)
=det[Z, + B*DZ, D'B*"]
x det[B°Z, B — B°Z,D'B*’
x (2, + B°DS,D'B°*")~'B°'D°%,,B"]
=det[Z, + B°DS,D'B*]
x det [(B<(Z,'+ D'B*'2;'B°D)"'B")
(92)
which follows from (52) and the matrix inversion
lemma. If the full rank property does not hold,

then one can add diag[0, €/,], 0<e<«1 to the
covariance equation to make

(I + BKglp)V (1, + BKgl,p)"

+diag [0, el,] >0 (93)
if £,>0. This changes the derivation of the
controller in a trivial way and it can also easily
be shown that this assigns a yet higher value to

the covariance (in the positive semidefinite
sense).

Theorem 6. Suppose that the assignability
conditions of Theorem 5 are met with a replaced
with 8>0, and the corresponding Kj is given
from (81), where A,, C, are given. Let the
errors in A,, C, be characterized by (88), (91)
where X is defined by (85), and X, >0, Z,, >0,
B<B<" >0 [or, if not, design is accomplished with
diag (0, €l,), 0 < € «< 1, added to equation (84)].
Then the m.s. and a.s. boundedness of the
system state can be maintained if the perturba-
tions satisfy the second moment bound (91).
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EXAMPLE

Let us consider the simply supported beam
example of Skelton et al. (1991). The discretiza-
tion of equations with a sampling period of 0.05s
will result in

[ 0.9988 0.0500 0 0
4o | ~00500 0.9983 0 0
0 0 0.9801 0.0496 |’
L 0 0 -0.7939 0.9781
70.0007 —0.0013
5 | 0:0294 —0.0500
0.0012  0.0025
| 0.0472  0.0992
70.0500 0 0 0
_]o 0.0500 0 0
%=1 0 0.0494 —-0.0186 |’
[ 0 0 -0.0186  0.0599
. [1 0 2 0
¢ “10.9511 0 —0.5878 0]'

We assume that there is a measurement noise
of zero mean and covariance £,, = 107*/..

Also, structured parameter perturbations are
modeled as white noises such that

A(w) = A +a(w)A,,
Cu(w)=C +a(0)Cy,

where a, and ¢, are both standard scalar white
noise sequences and

(94)

0 0 0 0
| 0.0200 0.0065 0 0
“{o 0 0 0 ’
0 0 0.425 0.0275
(95)
C‘=10_3{0.1000 0 0.02000 0}'
0.1000 0 0.0500 0

We can view (94) and (95) as describing the
maximum amount of parameter perturbations
for this system, so if we design our controller
based on these values, then the closed-loop
system will remain stable in the senses described
before, for all stochastic perturbations with
smaller variances.

Let us suppose that we are allowed to use a
third order controller and would like to assign a
covariance so that the following mean square
values of the output variables dictated by the
pointing accuracy requirements are satisfied:

lim £ ([ Y] =167, 2.0].

By using the simplified assignability conditions
(75)-(77), an assignable closed-loop (composite)
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state covariance which satisfies these conditions
is given by:

( 1.7534 -0.5002 0.0106  0.5196
-0.5002  3.0338 -0.5213 -0.1013
0.0106 —0.5213  1.2282 -0.5017
X= 0.5196 —0.1013 -0.5017 18.2277
—-2.2410  2.4778 ~2.5920  4.3542
1.4071 -2.1106 -0.2600 -5.0918
L—7.7848  9.0291 -3.3558 15.7135
-2.2410 1.4071  —7.7848 ]
2.4778  <2.1106 9.0291
—-2.5920  —-0.2600 ~3.3558
43542  -5.0918 15.7135
9.8070 -3.3674 23.5482
-3.3674 5.3178  —17.4382
23.5482  —17.4382  78.8709 |

with a spectrum of {0.0486, 0.0375, 0.4183,
2.1232, 4.8230, 15.3486, 95.4397}. This covari-
ance is found by a recursion that involves solving
an algebraic Riccati equation at every step. Since
we do not yet have a theoretical convergence
result for this algorithm, it is not included here.

We chose U=1, Z=0 for simplicity which
gives the gain matrix, from (63) and (64)

—29.1605 —25.8431 -29.7540

—9.3691  22.6058 -73.9622
K= —1.7749 -0.3840 -0.7218
0.8911 1.5140 0.2140
—4.1650 —-4.9793 —0.0281
33.0330  2.2520
80.0310  38.3695
0.3731 0.0873
—0.1089  0.2633
—0.0427 -0.9907
or
—-0.7218  0.3731  0.0873
Ac.=| 0.2140 -0.1089 0.2633 |,
-0.0281 -0.0427 -0.9907
—-1.7749 —0.3840
B.=] 0.8911 1.5140
-4.1650 -4.9793

c [—29.7540 33.0330 2.2520]
© 1-73.9622 80.0310 38.3695)

_ [—-29. 1605 —25.8431]
—9.3691  22.6058

which results in a closed-loop system which is a
m.s. and a.s. stable with the desired steady state
covariance. Since this design guarantees stability
for the maximum possible perturbations defined
in (93)-(94), we do not need to further robustify
this controller.

c

CONCLUSION

This work contains a characterization of all
covariances that a discrete stochastic parameter
system may have, and parametrizes all static and
fixed-order linear dynamic output feedback
controllers that assign a desired covariance.
Robustification of the controllers is achieved for
use in an erroneously modeled system or in one
with deterministic and random parameter per-
turbations.  Although this work implicitly
achieves a parametrization of all mean-square
stabilizing controllers, which is of prime
theoretical importance, at the implementation
stage, we have had several difficulties. If a
desired covariance can be found from maximum
mean-square values of the regulated state
variables, but does not satisfy the assignability
conditions, then one should be able to find an
assignable covariance that is close in some sense
to the desired covariance. This implementation
issue and others like the numerical generation of
all assignable covariances for a given system
have been the subject of recent research
(Grigoriadis and Skelton, 1992) and positive
results will be made available soon.
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NEW SPACE STRUCTURE AND CONTROL DESIGN
CONCEPTS

Purdue University Space Systems Control Lab
AFOSR Grant No. F49620-92-J-0202:

PURDUE ALGORITHM FOR STRUCTURE/CONTROLLER
DESIGN:

o MONOTONICALLY CONVERGENT ALGORITHM

e GUARANTEES GLOBAL OPTIMAL SOLUTION TO THE
SIMULTANEOUS STRUCTURE/CONTROL REDESIGN (WITH
LINEAR PARAMETERS)

e PARAMETRIZES ALL STABILIZING COMBINATIONS OF
PASSIVE AND ACTIVE CONTROL

e OPTIMIZES THE DISTRIBUTION OF MASS, STIFFNESS AND

DAMPING WITHIN A CONTROLLED STRUCTURAL SYSTEM,
TO SATISFY DYNAMIC RESPONSE CONSTRAINTS ON:

e OUTPUT RMS VALUES

e OUTPUT PEAK VALUES IN TIME (WITH UNKNOWN
BUT ENERGY BOUNDED DISTURBANCES)

e STABILITY

Current Applications: The Phillips Lab Laser Crosslink
Structure 91




